Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 033102    DOI: 10.1088/1674-1056/abccb9
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Effect of radiation on compressibility of hot dense sodium and iron plasma using improved screened hydrogenic model with l splitting

Amjad Ali1,†, G Shabbir Naz1, Rukhsana Kouser1, Ghazala Tasneem1, M Saleem Shahzad1, Aman-ur-Rehman2, and M H Nasim1
1 Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad\/ 45650, Pakistan; 2 Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad\/ 45650, Pakistan
Abstract  High pressure investigations of matter involve the study of strong shock wave dynamics within the materials which gives rise to many thermal effects leading to dissociation of molecules, ionization of atoms, and radiation emission, etc. The response of materials experiencing a strong shock can be determined by its shock Hugoniot calculations which are frequently applied in numerical and experimental studies in inertial confinement fusion, laboratory astrophysical plasma, etc. These studies involve high energy density plasmas in which the radiation plays an important role in determining the energy deposition and maximum compressibility achieved by the shock within material. In this study, we present an investigation for the effect of radiation pressure on the maximum compressibility of the material using shock Hugoniot calculations. In shock Hugoniot calculations, an equation of state (EOS) is developed in which electronic contributions for EOS calculations are taken from an improved screened hydrogenic model with -l splitting (I-SHML) [ High Energy Density Physics (2018) 26 48] under local thermodynamic equilibrium (LTE) conditions. The thermal ionic part calculations are adopted from the state of the art Cowan model while the cold ionic contributions are adopted from the scaled binding energy model. The Shock Hugoniot calculations are carried out for sodium and iron plasmas and our calculated results show excellent agreement with published results obtained by using either sophisticated self-consistent models or the first principle study.
Keywords:  self-consistent-field methods      thermodynamics of plasmas      average atom model      shock Hugoniot calculation  
Received:  27 August 2020      Revised:  20 October 2020      Accepted manuscript online:  23 November 2020
PACS:  31.15.xr (Self-consistent-field methods)  
  31.15.bt (Statistical model calculations (including Thomas-Fermi and Thomas-Fermi-Dirac models))  
  52.25.Kn (Thermodynamics of plasmas)  
  52.50.Lp (Plasma production and heating by shock waves and compression)  
Corresponding Authors:  Corresponding author. E-mail: amjadali_11@pieas.edu.pk   

Cite this article: 

Amjad Ali, G Shabbir Naz, Rukhsana Kouser, Ghazala Tasneem, M Saleem Shahzad, Aman-ur-Rehman, and M H Nasim Effect of radiation on compressibility of hot dense sodium and iron plasma using improved screened hydrogenic model with l splitting 2021 Chin. Phys. B 30 033102

1 Chen Q F, Zheng J, Gu Y J, Chen Y L, Cai L C and Shen Z J 2014 J. Chem. Phys. 140 074202
2 Li Z G, Chen Q F, Gu Y J, Zheng J, Zhang W, Liu L, Li G J, Wang Z Q and Dai J Y 2018 Phys. Rev. B 98 064101
3 Tang J, Gu Y J, Chen Q F, Li Z G, Zheng J, Li C J and Li J T 2018 Phys. Rev. B 97 140101
4 Zheng J, Chen Q F, Gu Y J, Li J T, Li Z G, Li C J and Chen Z Y 2017 Phys. Rev. B 95 224104
5 Nellis W, Mitchell A C and Young D A 2003 J. Appl. Phys. 93 304
6 Al'tshuler L V 1965 Uspekhi Fiz. Nauk 85 199
7 Hoffmann D H H, Blazevic A, Ni P, Rosmej O, Tauschwitz A, Udrea S, Varentsov D, Weyrich K and Maron Y 2005 Laser Part. Beams 23 47
8 Bell A R, Davies J R, Guerin S and Ruhl H 1997 Plasma Phys. Control Fusion 39 653
9 Paul Drake R Astrophysics-ebook/dp/B00FQ0QIU02006 High Energy Density Physics Shock Wave and High Pressure Phenomena, ISBN-13: 978-3540293149 and ISBN-10: 3540293140 (Berlin, Heidelberg, New York: Springer)
10 Davidson Ronald C Frontires in high energy density physics, The X-Games of Contemporary Science, Report: National Academy of Sciences, National Research Council, Committee on High Energy Density Plasma Physics
11 Larsen J and Colvin J 11070196722014 Properties and Behavior of Matter at Extreme Conditions (Cambridge: Cambridge University Press)
12 Ross M 1985 Rep. Prog. Phys. 48 1
13 Eric D Chisolm, Scott D Crockett and Duane C Wallace 2003 Phys. Rev. B 68 104103
14 Eric L Petersen and Ronald K Hanson 2001 Shock Waves 10 405
15 Luo S N, Swift D C, Tierney T E, Paisley D L, Kyrala G A, Johnson R P, Hauer A A, Tschauner O and Asimow P D 2004 High Press. Res. 24 409
16 Fortov V E 2007 Uspekhi Fiz. Nauk 177 347
17 Fortov V E and Lomonosov I V 2010 Shock Waves 20 53
18 Fortov V E and Lomonosov I V 2014 Open Plasma Phys. J. 3 122
19 Fortov V E and Igor V 2014 Uspekhi Fiz. Nauk 184 231
20 Ghatak A K, Elieser S and Hora H1986 An introduction to equations of state: theory and applications (Cambridge: Cambridge University Press)
21 Pain J C 2007 Phys. Lett. A 362 120
22 Porcherot Q, Faussurier G and Blancard C 2010 High Energy Density Physics 6 76
23 Balazs F Rozsnyai 2012 High Energy Density Physics 8 88
24 Gregori G, Glenzer S H, Rogers F J, Pollaine S M, Landen O L, Blancard C, Faussurier G, Renaudin P, Kuhlbrodt S and Redmer R 2004 Phys. Plasmas 11 2754
25 Richard M 1982 J. Quantum Spectrosc. Radiat. Transfer 27 345
26 Faussurier G, Blancard C and Renaudin P 2008 High Energy Density Physics 4 114
27 Colvin J and Larsen J2013 Extreme Physics: Properties and Behavior of Matter at Extreme Conditions (Cambridge: Cambridge University Press)
28 Larsen J Conditions/dp/11071241152017 Foundations of High-Energy-Density Physics: Physical Processes of Matter at Extreme Conditions (Cambridge: Cambridge University Press)
29 Dyachkov S A, Levashov P R and Minakov D V 2016 J. Phys. Conf. Ser. 774 012006
30 Dyachkov S and Levashov P2016 arXiv preprint 1608.08124
31 Dyachkov S, Levashov P and Minakov D2016 Phys. Plasmas 23 2016
32 Segev E and Gazit D 2019 Physica A 518 158
33 Faussurier G, Blancard C and Decoster A 1997 Journal of Quantitative Spectroscopy and Radiative Transfer 58 223
34 Das M and Menon S V G 2009 Phys. Rev. B 79 045126
35 More R M, Warren K H, Young D A and Zimmerman G B 1988 Phys. Fluids 31 3059
36 Rosen M D, Scott H A, Hinkel D E, Williams E A, Callahan D A, Town R P J, Divol L, Michel P A, Kruer W L, Suter L J, London R A, Harte J A and Zimmerman G B 2011 High Energy Density Physics 7 180
37 Yan J and Qiu Y B 2001 Phys. Rev. E 64 056401
38 Zeng J L, Yuan J M and Lu Q S 2001 Phys. Rev. E 64 066412
39 Gao C, Zeng J L and Yuan J M 2001 High Energy Density Physics 7 54
40 Zeng J L and Yuan J M 2007 Phys. Rev. E 76 026401
41 Zeng J L, Gao C and Yuan J M 2010 Phys. Rev. E 82 026409
42 Faussurier G 2000 Journal of Quantitative Spectroscopy and Radiative Transfer 65 207
43 Blenski T, Piron R, Caizergues C and Cichocki B 2013 High Energy Density Physics 9 687
44 Murillo Michael S, Weisheit Jon, Hansen Stephanie B and Dharma-wardana M W C 2013 Phys. Rev. E 87 063113
45 Kiyokawa S 2014 High Energy Density Physics 13 40
46 Calisti A, Ferri S, Marciante M and Talin B 2014 High Energy Density Physics 13 1
47 Liberman David A1979 Phys. Rev. B 20 451
48 Uvarov V B, Nikiforov A F and Novikov V G Quantum-Statistical Models of Hot Dense Matter: Methods for computation opacity and equation of state (Basel, Boston, Berlin: Birkh\"auser Verlag)
49 Sterne P A, Hansen S B, Wilson B G and Isaacs W A 2007 High Energy Density Physics 3 278
50 Pattison L K, Crowley B J B, Harris J W O and Upcraft L M 2010 High Energy Density Physics 6 66
51 Perrot F 1989 Phys. Scr. 39 332
52 Blottiau P and Damamme G 1992 Journal of Quantitative Spectroscopy and Radiative Transfer 47 127
53 Marchand R, Caille S and Lee Y T 1990 Journal of Quantitative Spectroscopy and Radiative Transfer 43 149
54 Mayer H1947 Methods of opacity calculations, Technical Report LA-647, Los Alamos Scientific Laboratory, Los Alamos, NM USA
55 More R M 1982 Journal of Quantitative Spectroscopy and Radiative Transfer 27 345
56 Rickert A and Meyer-Ter-Vehn J 1990 Laser and Particle Beams 8 715
57 Blenski T and Cichocki B 2007 High Energy Density Physics 3 34
58 Piron R and Blenski T 2013 High Energy Density Physics 9 702
59 Pain J C A 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1553
60 Pain J C 2007 Contributions to Plasma Physics 47 421
61 Pain J C 2007 High Energy Density Physics 3 204
62 Chandrani Bhattacharya and Menon S V 2009 J. Appl. Phys. 105 064907
63 Bhattacharya C and Srivastava M K 2007 J. Appl. Phys. 102 064915
64 Bhattacharya C and Srivastava M K 2010 J. Phys. Conf. Ser. 208 012004
65 Zel'dovich Yu P and Raizer Ya B1967 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Mineola, New York: Elsevier)
66 Zhang S, Kevin P D, Soubiran F O and Militzer B 2017 J. Chem. Phys. 146 074505
67 Tari A 2003 The Specific Heat of Matter at Low Temperatures (Imperial College Press, World Scientific Publishing Co)
[1] Ion population fraction calculations using improved screened hydrogenic model with l-splitting
Amjad Ali, G Shabbir Naz, Rukhsana Kouser, Ghazala Tasneem, M Saleem Shahzad, Aman-ur-Rehman, M H Nasim. Chin. Phys. B, 2018, 27(10): 105201.
[2] Radiative properties of matter based on quantum statistical method
Rukhsana Kouser, G Tasneem, Muhammad Saleem Shahzad, S Sardar, Amjad Ali, M H Nasim, M Salahuddin. Chin. Phys. B, 2017, 26(7): 075201.
[3] EFFECT OF EXCITATION-AUTOIONIZATION IN NON-LOCAL THERMODYNAMIC EQUILIBRIUM PLASMAS
Wu Ze-qing (吴泽清), Zhang Ben-ai (张本爱), Qiu Yu-bo (邱玉波). Chin. Phys. B, 2000, 9(7): 519-522.
No Suggested Reading articles found!