Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 127401    DOI: 10.1088/1674-1056/23/12/127401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermodynamics around magnetic phase transitions in alternating double-chain spin systems

Ding Lin-Jie (丁林杰), Zhong Yuan (钟园), Fan Shuai-Wei (樊帅伟), Zhu Li-Ya (朱丽娅)
Department of Physics, China Three Gorges University, Yichang 443002, China
Abstract  The thermodynamics and quantum phase transitions of two typically alternating double-chain systems are investigated by Green's function theory. (i) For the completely antiferromagnetic (AFM) alternating double-chain, the low-temperature antiferromagnetism with gapped behavior is observed, which is in accordance with the experimental result. In a magnetic field, we unveil the ground state phase diagram with zero plateau, 1/2 plateau, and polarized ferromagnetic (FM) phases, as a result of the intra-cluster spin-singlet competition. Furthermore, the Grüneisen ratio is an excellent tool to identify the quantum criticality and testify various quantum phases. (ii) For the antiferromagnetically coupled FM alternating chains, the 1/2 magnetization plateau and double-peak structure of specific heat appear, which are also observed experimentally. Nevertheless, the M–h curve shows an anomalous behavior in an ultra-low field, which is ascribed to the effectively weak Haldane-like state, demonstrated by the two-site entanglement entropy explicitly.
Keywords:  thermodynamics      quantum phase transition      double-chain spin system  
Received:  21 May 2014      Revised:  26 July 2014      Accepted manuscript online: 
PACS:  74.25.Bt (Thermodynamic properties)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  75.10.Pq (Spin chain models)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204157, 11174179, and 11247020), the Hubei Provincial Natural Science Foundation, China (Grant No. D20131307), and the China Three Gorges University Project (Grant No. KJ2011B068).
Corresponding Authors:  Ding Lin-Jie     E-mail:  dinglinjie82@126.com

Cite this article: 

Ding Lin-Jie (丁林杰), Zhong Yuan (钟园), Fan Shuai-Wei (樊帅伟), Zhu Li-Ya (朱丽娅) Thermodynamics around magnetic phase transitions in alternating double-chain spin systems 2014 Chin. Phys. B 23 127401

[1]Sachdev S 2000 Science 288 475
[2]Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T and Ohta H 2005 Phys. Rev. Lett. 94 227201
[3]Wolfa B, Tsuia Y, Jaiswal-Nagara D, Tutscha U, Honeckerb A, Remović-Langera K, Hofmanna G, Prokofievc A, Assmusa W, Donathd G and Langa M 2011 Proc. Natl. Acad. Sci. USA 108 6862
[4]Liu W J, Xin Z H, Chen S L and Zhang C Y 2013 Chin. Phys. B 22 027501
[5]Carr L D 2011 Understanding Quantum Phase Transitions (CRC Press, Taylor and Francis Group, LLC)
[6]Azzouz M 2008 Phys. Rev. B 78 014421
[7]Gong S S, Gao S and Su G 2009 Phys. Rev. B 80 014413
[8]Chen S R, Xia Y J and Man Z X 2010 Chin. Phys. B 19 050304
[9]Tan X D, Jin B Q and Gao W 2013 Chin. Phys. B 22 020308
[10]Garst M and Rosch A 2005 Phys. Rev. B 72 205129
[11]Meingast C, Hardy F, Heid R, Adelmann P, Böhmer A, Burger P, Ernst D, Fromknecht R, Schweiss P and Wolf T 2012 Phys. Rev. Lett. 108 177004
[12]Trippe C, Honecker A, Klümper A and Ohanyan V 2010 Phys. Rev. B 81 054402
[13]Qi Y, Du A and Ma Y 2012 Phys. Lett. A 377 27
[14]Jafari R 2012 Eur. Phys. J. B 85 167
[15]Topilko M, Krokhmalskii T, Derzhko O and Ohanyan V 2012 Eur. Phys. J. B 85 278
[16]Ohanyan V and Honecker A 2012 Phys. Rev. B 86 054412
[17]Boyarchemkov A S, Bostrem I G and Ovchinnikov A S 2007 Phys. Rev. B 76 224410
[18]Pereira M S S, de Moura F A B F and Lyra M L 2009 Phys. Rev. B 79 054427
[19]Totsuka K 1997 Phys. Rev. B 57 3454
[20]Oshikawa M, Yamanaka M and Affleck I 1997 Phys. Rev. Lett. 78 1984
[21]Rüegg Ch, Kiefer K, Thielemann B, McMorrow D F, Zapf V, Normand B, Zvonarev M B, Bouillot P, Kollath C, Giamarchi T, Capponi S, Poilblanc D, Biner D and Krämer K W 2008 Phys. Rev. Lett. 101 247202
[22]Ding L J, Yao K L and Fu H H 2010 ChemPhysChem 11 3291
[23]Hong T, Kim Y H, Hotta C, Takano Y, Tremelling G, Turnbull M M, Landee C P, Kang H J, Christensen N B, Lefmann K, Schmidt K P, Uhrig G S and Broholm C 2010 Phys. Rev. Lett. 105 137207
[24]Yamaguchi H, Iwase K, Ono T, Shimokawa T, Nakano H, Shimura Y, Kase N, Kittaka S, Sakakibara T, Kawakami T and Hosokoshi Y 2013 Phys. Rev. Lett. 110 157205
[25]Yamaguchi H, Miyagai H, Shimokawa T, Iwase K, Ono T, Kono Y, Kase N, Araki K, Kittaka S, Sakakibara T, Kawakami T, Okunishi K and Hosokoshi Y 2014 J. Phys. Soc. Jpn. arXiv: 1402.2743v1
[26]Iruoka A, Fukada M, Kumai R, Itakura M, Hikami S and Sugawara T 1994 J. Am. Chem. Soc. 116 2609
[27]Shiomi D, Kanaya T, Sato K, Mito M, Takeda K and Takui T 2001 J. Am. Chem. Soc. 123 11823
[28]Hayakawa K, Shiomi D, Ise T, Sato K and Takui T 2006 J. Mater. Chem. 16 4146
[29]Ise T, Shiomi D, Sato K and Takui T 2006 Chem. Commun. 46 4832
[30]Maekawa K, Shiomi D, Ise T, Sato K and Takui T 2007 Org. Biomol. Chem. 5 1641
[31]Gilroy J B, McKinnon S D J, Kennepohl P, Zsombor M S, Ferguson M J, Thompson L K and Hicks R G 2007 J. Org. Chem. 72 8062
[32]Zoppellaro G, Geies A, Andersson K K, Enkelmann V and Baumgarten M 2008 Eur. J. Org. Chem. 1431
[33]Tanaka H, Shiomi D, Suzuki S, Kozaki M, Okada K, Sato K and Takui T 2010 CrystEngComm 12 526
[34]Hui P, Arif M K and Chandrasekar R 2012 Org. Biomol. Chem. 10 2439
[35]Gao Y, Liu C G and Jiang Y S 2002 J. Phys. Chem. A 106 2592
[36]Zhu Y Y, Cui C, Li N, Wang B W, Wang Z M and Gao S 2013 Eur. J. Inorg. Chem. 3101
[37]Zhao Y, Li W, Xi B, Ran S J, Zhu Y Y, Wang B W, Gao S and Su G 2013 Europhys. Lett. 104 57009
[38]Iwase K, Yamaguchi H, Ono T, Shimokawa T, Nakano H, Matsuo A, Kindo K, Nojiri H and Hosokoshi Y 2013 J. Phys. Soc. Jpn. 82 074719
[39]Jordan P and Wigner E 1928 Z. Phys. 47 631
[40]Lieb E, Schultz T and Mattis D 1961 Ann. Phys. 16 407
[41]Azzouz M 1993 Phys. Rev. B 48 6136
[42]Azzouz M 2007 Phys. Rev. B 76 064419
[43]Tyablikov S V 1967 Methods in the Quantum Theory of Magnetism (New York: Plenum)
[44]Callen H B 1963 Phys. Rev. 130 890
[45]de Lima J P and Goncalves L L 1999 J. Magn. Magn. Mater. 206 135
[46]Fröbrich P and Kuntz P J 2006 Phys. Rep. 432 223
[47]Wells B M, Landee C P, Turnbull M M, Awwadi F F and Twamley B 2005 J. Mol. Cat. A: Chem. 228 117
[48]Li Y C and Li S S 2008 Phys. Rev. B 78 184412
[49]Yamaguchi H, Okubo T, Iwase K, Ono T, Kono Y, Kittaka S, Sakakibara T, Matsuo A, Kindo K and Hosokoshi Y 2013 Phys. Rev. B 88 174410
[50]Haldane F D M 1983 Phys. Rev. Lett. 50 1153
[51]Date M and Kindo K 1990 Phys. Rev. Lett. 65 1659
[1] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[2] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[3] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[4] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[5] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[6] Understanding the battery safety improvement enabled by a quasi-solid-state battery design
Luyu Gan(甘露雨), Rusong Chen(陈汝颂), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(11): 118202.
[7] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[8] Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy
Xiu-Xing Zhang(张修兴), Fang-Jv Li(李芳菊), Kai Wang(王凯), Jing Xue(薛晶), Guang-Wen Huo(霍广文), Ai-Ping Fang(方爱平), and Hong-Rong Li(李宏荣). Chin. Phys. B, 2021, 30(9): 090504.
[9] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[10] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[11] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[12] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[13] Effect of radiation on compressibility of hot dense sodium and iron plasma using improved screened hydrogenic model with l splitting
Amjad Ali, G Shabbir Naz, Rukhsana Kouser, Ghazala Tasneem, M Saleem Shahzad, Aman-ur-Rehman, and M H Nasim. Chin. Phys. B, 2021, 30(3): 033102.
[14] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[15] Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军). Chin. Phys. B, 2021, 30(11): 110301.
No Suggested Reading articles found!