Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 090506    DOI: 10.1088/1674-1056/ac1334
GENERAL Prev   Next  

Ferromagnetic Heisenberg spin chain in a resonator

Yusong Cao(曹雨松)1,2,†, Junpeng Cao(曹俊鹏)1,2,3,4, and Heng Fan(范桁)1,2,3,5
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China;
5 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  We investigate the properties of a generalized Rabi model by replacing the two-level atom in Rabi model with a ferromagnetic Heisenberg spin chain. We find that the dynamical behavior of the system can be divided into four categories. The energy spectrum of the ground state and some low excited states are obtained. When the magnons and the photon are in resonance, the model is exactly solvable and the rigorous solution is obtained. Near the resonance point where the detuning is small, the system is studied with the help of perturbation theory. This model has a spontaneously breaking of parity symmetry, suggesting the existence of a quantum phase transition. The critical exponent from the normal phase is computed.
Keywords:  magnon      resonator      quantum phase transition  
Received:  01 May 2021      Revised:  06 July 2021      Accepted manuscript online:  12 July 2021
PACS:  05.30.Jp (Boson systems)  
  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.-p (Quantum optics)  
Corresponding Authors:  Yusong Cao     E-mail:  caoyusong15@mails.ucas.ac.cn

Cite this article: 

Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁) Ferromagnetic Heisenberg spin chain in a resonator 2021 Chin. Phys. B 30 090506

[1] Rabi I I 1937 Phys. Rev. 51 652
[2] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[3] Liebfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
[4] Englund D, Faraon A, Fushman I, Stoltz N, Petroff P and Vuckovic J 2007 Nature 450 857
[5] Cordero S, Nahmad-Achar E, Lopez-Pena R and Castanos O arXiv:2002.02491 [quant-ph]
[6] Shen L, Yang J, Shi Z, Zhong Z and Xu C 2021 J. Phys. A: Math. Theor. 54 105302
[7] Khitrova G, Gibbs H M, Kira M, Koch S W and Scherer A 2006 Nat. Phys. 2 81
[8] Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
[9] Dicke R H 1954 Phys. Rev. 93 99
[10] Hepp K and Lieb E H 1973 Ann. Phys. 76 360
[11] Peng J, Rico E, Zhong J, Solano E and Egusquiza I L 2019 arXiv:1904.02118 [quant-ph]
[12] Ying Z, Cong L and Sun X 2020 J. Phys. A: Math. Theor. 53 345301
[13] Liu M, Chesi S, Ying Z, Chen X, Luo H and Lin H 2017 Phys. Rev. Lett. 119 220601
[14] Lambert N, Emary C and Brandes T 2005 Phys. Rev. A 71 053804
[15] Lambert N, Emary C and Brandes T 2004 Phys. Rev. Lett. 92 073602
[16] Emary C and Brandes T 2003 Phys. Rev. E 67 066203
[17] Flottat T, Hebert F, Rousseau V G and Batrouni G G 2016 Eur. Phys. J. D 70 213
[18] Schiro M, Bordyuh M, Oztop B and Tureci H E 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224021
[19] Wong M T C and Law C K 2011 Phys. Rev. A 83 055802
[20] Lei S and Lee R 2008 Phys. Rev. A 77 033827
[21] Wang Y, Su Y, Chen X and Wu C 2020 Phys. Rev. Appl. 14 044043
[22] O'Conner K M and Wooters W K 2001 Phys. Rev. A 63 052302
[23] Gunlycke D, Kendon V M and Vedral V 2001 Phys. Rev. A 64 042302
[24] Bose S, Fuentes-Guridi I, Knight P L and Vedral V 2001 Phys. Rev. Lett. 87 050401
[25] Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
[26] Andrianov S N and Moiseev S A 2014 Phys. Rev. A 90 042303
[27] Goryachev M, Farr W G, Creedon D L, Fan Y, Kostylev M and Tobar M E 2014 Phys. Rev. Appl. 2 054002
[28] Wolski S P, Lachance-Quirion D, Tabuchi Y, Kono S, Noguchi A, Usami K and Nakamura Y 2020 Phys. Rev. Lett. 125 117701
[29] Liu Z, Xiong H and Wu Y 2019 Phys. Rev. B 100 134421
[30] Xie Q, Zhong H, Batchelor M T and Lee C 2017 J. Phys. A: Math. Theor. 50 113001
[31] Pedernales J S, Lizuain I, Felicetti S, Romero G, Lamata L and Solano E 2015 Sci. Rep. 5 15472
[1] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[2] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[3] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[4] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[5] High-performance and fabrication friendly polarization demultiplexer
Huan Guan(关欢), Yang Liu(刘阳), and Zhiyong Li (李智勇). Chin. Phys. B, 2022, 31(3): 034203.
[6] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[7] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[8] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[9] Observation of nonlinearity and heating-induced frequency shifts in cavity magnonics
Wei-Jiang Wu(吴维江), Da Xu(徐达), Jie Qian(钱洁), Jie Li(李杰), Yi-Pu Wang(王逸璞), and Jian-Qiang You(游建强). Chin. Phys. B, 2022, 31(12): 127503.
[10] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[11] From microelectronics to spintronics and magnonics
Xiu-Feng Han(韩秀峰), Cai-Hua Wan(万蔡华), Hao Wu(吴昊), Chen-Yang Guo(郭晨阳), Ping Tang(唐萍), Zheng-Ren Yan(严政人), Yao-Wen Xing(邢耀文), Wen-Qing He(何文卿), and Guo-Qiang Yu(于国强). Chin. Phys. B, 2022, 31(11): 117504.
[12] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[13] A novel low-loss four-bit bandpass filter using RF MEMS switches
Lulu Han(韩路路), Yu Wang(王宇), Qiannan Wu(吴倩楠), Shiyi Zhang(张世义), Shanshan Wang(王姗姗), and Mengwei Li(李孟委). Chin. Phys. B, 2022, 31(1): 018506.
[14] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[15] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
No Suggested Reading articles found!