Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 117103    DOI: 10.1088/1674-1056/ac8345
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements

Hengcan Zhao(赵恒灿)1, Meng Lyu(吕孟)1, Jiahao Zhang(张佳浩)1, Shuai Zhang(张帅)1, and Peijie Sun(孙培杰)1,2,3,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Science, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  CePdAl has been recently recognized as a frustrated antiferromagnetic heavy-fermion compound with a pressure- or field-tuned, extended quantum critical phase at zero temperature. Identifying characteristic signatures of the emerging quantum critical phase, which are expected to be distinct from those near a quantum critical point, remains challenging. In this work, by performing ultrasonic and thermoelectric measurements down to very low temperatures in a 3He-4He dilution refrigerator in the presence of magnetic field, we are able to obtain some crucial thermodynamic and thermal transport features of the quantum critical phase, including a frustration-related elastic softening detected by ultrasound and a Fermi-surface change probed by thermoelectric effect.
Keywords:  quantum phase transition      ultrasound      elastic constant      thermoelectric power  
Received:  24 June 2022      Revised:  20 July 2022      Accepted manuscript online:  22 July 2022
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  73.43.Nq (Quantum phase transitions)  
  75.30.Mb (Valence fluctuation, Kondo lattice, and heavy-fermion phenomena)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303100), the National Natural Science Foundation of China (Grant Nos. 12141002, 52088101, and 11974389), the Fund of the Chinese Academy of Sciences through the Scientific Instrument Developing Project (Grant No. ZDKYYQ20210003), the Strategic Priority Research Program (Grant No. XDB33000000), and by China Postdoctoral Science Foundation (Grant No. 2020TQ0349).
Corresponding Authors:  Peijie Sun     E-mail:  pjsun@iphy.ac.cn

Cite this article: 

Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰) Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements 2022 Chin. Phys. B 31 117103

[1] Si Q and Steglich F 2010 Science 329 1161
[2] Löhneysen H V, Rosch A, Vojta M and Wölfle P 2007 Rev. Mod. Phys. 79 1015
[3] Stewart G R 2001 Rev. Mod. Phys. 73 797
[4] Gegenwart P, Si Q and Steglich F 2008 Nat. Phys. 4 186
[5] Doniach S 1977 Physica B+C 91 231
[6] Paschen S, Lühmann T, Wirth S, Gegenwart P, Trovarelli O, Geibel C, Steglich F, Coleman P and Si Q 2004 Nature 432 881
[7] Zhao H, Zhang J, Lyu M, Bachus S, Tokiwa Y, Gegenwart P, Zhang S, Cheng J G, Yang Y F, Chen G F, Isikawa Y, Si Q, Steglich F and Sun P 2019 Nat. Phys. 15 1261
[8] Zhang J, Zhao H, Lv M, Hu S, Isikawa Y, Yang Y F, Si Q, Steglich F and Sun P 2018 Phys. Rev. B 97 235117
[9] Dönni A, Ehlers G, Maletta H, Fischer P, Kitazawa H and Zolliker M 1996 J. Phys.: Condens. Matter 8 11213
[10] Kitazawa H, Matsushita A, Matsumoto T and Suzuki T 1994 Physica B 199-200 28
[11] Weber D, Yoshizawa M, Kouroudis I, Lüthi B and Walker E 1987 Europhys. Lett. 3 827
[12] Thalmeier P and Lüthi B 1991 Handbook on the Physics and Chemistry of Rare Earth, Vol. 14, (Amsterdam: North-Holland)
[13] Lüthi B 2005 Physical Acoustics in the Solid State (Berlin: Springer-Verlag)
[14] Hartmann S 2010 Thermoelectric Transport in Correlated Electron Systems, PhD Thesis (Technical University of Dresden)
[15] Lucas S, Grube K, Huang C L, Sakai A, Wunderlich S, Green E L, Wosnitza J, Fritsch V, Gegenwart P, Stockert O and Löhneysen H V 2017 Phys. Rev. Lett. 118 107204
[16] Hartmann S, Oeschler N, Krellner C, Geibel C, Paschen S and Steglich F 2010 Phys. Rev. Lett. 104 096401
[1] Wideband frequency-dependent dielectric properties of rat tissues exposed to low-intensity focused ultrasound in the microwave frequency range
Xue Wang(王雪), Shi-Xie Jiang, Lin Huang(黄林), Zi-Hui Chi(迟子惠), Dan Wu(吴丹), and Hua-Bei Jiang. Chin. Phys. B, 2023, 32(3): 034305.
[2] Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion
Yu-Bing Li(李玉冰), Jian Wang(王建), Chang Su(苏畅), Wei-Jun Lin(林伟军), Xiu-Ming Wang(王秀明), and Yi Luo(骆毅). Chin. Phys. B, 2023, 32(1): 014303.
[3] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[4] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[5] Increasing the ·OH radical concentration synergistically with plasma electrolysis and ultrasound in aqueous DMSO solution
Chao Li(李超), De-Long Xu(徐德龙), Wen-Quan Xie(谢文泉), Xian-Hui Zhang(张先徽), and Si-Ze Yang(杨思泽). Chin. Phys. B, 2022, 31(4): 048706.
[6] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[7] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[8] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[9] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[10] Numerical simulations of partial elements excitation for hemispherical high-intensity focused ultrasound phased transducer
Yanqiu Zhang(张艳秋), Hao Zhang(张浩), Tianyu Sun(孙天宇), Ting Pan(潘婷), Peiguo Wang(王佩国), and Xiqi Jian(菅喜岐). Chin. Phys. B, 2021, 30(7): 078704.
[11] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[12] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[13] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[14] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[15] Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment
Shang-Qu Yan(颜上取), Han Zhang(张含), Bei Liu(刘备), Hao Tang(汤昊), and Sheng-You Qian(钱盛友). Chin. Phys. B, 2021, 30(2): 028704.
No Suggested Reading articles found!