Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 040501    DOI: 10.1088/1674-1056/abd393
GENERAL Prev   Next  

Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature

Ke Yang(杨珂) and Ning-Hua Tong(同宁华)
1 Department of Physics, Renmin University of China, Beijing 100072, China
Abstract  We use the full-density matrix numerical renormalization group method to calculate the equilibrium dynamical correlation function C(ω) of the spin operator σz at finite temperature for the sub-ohmic spin-boson model. A peak is observed at the frequency ωTT in the curve of C(ω). The curve merges with the zero-temperature C(ω) in $\omega \gg \omega_\rm T$ and deviates significantly from the zero-temperature curve in ω «ω T.
Keywords:  spin-boson model      full-density matrix renormalization group      quantum phase transition      dynamical correlation function      finite temperature  
Received:  15 October 2020      Revised:  05 November 2020      Accepted manuscript online:  15 December 2020
PACS:  05.10.Cc (Renormalization group methods)  
  05.30.Jp (Boson systems)  
  64.70.Tg (Quantum phase transitions)  
  75.20.Hr (Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374362 and 11974420), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 15XNLQ03).
Corresponding Authors:  Corresponding author. E-mail: nhtong@ruc.edu.cn   

Cite this article: 

Ke Yang(杨珂) and Ning-Hua Tong(同宁华) Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature 2021 Chin. Phys. B 30 040501

1 Caldeira A O and Leggett A J 1983 Ann. Mod. Phys. 149 374
2 Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
3 Weiss U1993 Quantum Dissipative Systems (Singapore: World Scientific)
4 Chin A and Turlakov M 2006 Phys. Rev. B 73 075311
5 Anders F B, Bulla R,Vojta M 2007 Phys. Rev. Lett. 98 21042
6 Costi T A and McKenzie R H 2003 Phys. Rev. A 68 034301
7 Khveshchenko D V 2004 Phys. Rev. B 69 153311
8 Thorwart M and Hanggi P 2001 Phys. Rev. A 65 012309
9 Ruokola B and Ojanen T 2011 Phys. Rev. B 83 045417
10 Chin A, Prior J, Huelga S F and Plenio M B 2011 Phys. Rev. Lett. 107 160601
11 Bulla R, Tong N H and Vojta M 2003 Phys. Rev. Lett. 91 170601
12 Bulla R, Lee H J, Tong N H and Vojta M 2005 Phys. Rev. B 71 045122
13 Winter A, Rieger H, Vojta M and Bulla R 2009 Phys. Rev. Lett. 102 030601
14 Alvermann A and Fehske H 2009 Phys. Rev. Lett.102 150601
15 Lü Z G and Zheng H 2007 Phys. Rev. B 75 054302
16 Zhao C, Lü Z G and Zheng H 2011 Phys. Rev. E 84 011114
17 Zheng H and Lü Z G 2013 J. Chem. Phys. 138 174117
18 Wu N, Duan L, Li X and Zhao Y 2013 J. Chem. Phys. 138 084111
19 Wang L, Chen L, Zhou N and Zhao Y 2016 J. Chem. Phys. 144 024101
20 Zhang Y Y, Chen Q H and Wang K L 2010 Phys. Rev. B 81 121105
21 Duan C, Tang Z, Cao J and Wu J 2017 Phys. Rev. B 95 214308
22 Zhang H, Xu R X, Zheng X and Yan Y 2015 J. Chem. Phys. 142 024112
23 Yan Y A and Shao J 2016 Front. Phys. 11 110309
24 Kehrein S K and Mielke A 1996 Phys. Lett. A 219 313
25 Herbert S and Wilhelm Z 1999 J. Stat. Phys. 94 1037
26 Florens L, Freyn A, Venturelli D and Narayanan R 2011 Phys. Rev. B 84 155110
27 Zheng D C, Wan L and Tong N H 2016 Phys. Rev. B 98 115131
28 Zheng D C and Tong N H 2017 Chin. Phys. B 26 060502
29 Zheng D C and Tong N H 2017 Chin. Phys. B 26 060501
30 Sassetti M and Weiss U 1990 Phys. Rev. Lett. 65 2262
31 Bulla R, Costi T A and Vollhardt D 2001 Phys. Rev. B 64 045103
32 Hofstetter W 2000 Phys. Rev. Lett. 85 1508
33 Weichselbaum A 2012 Phys. Rev. B 86 245124
34 Anders F B and Schiller S 2005 Phys. Rev. Lett. 95 196801
35 Anders F B and Schiller S 2006 Phys. Rev. B 74 245113
36 Weichselbaum A and Delft J V 2006 Phys. Rev. Lett. 99 076402
37 Yang K and Tong N H 2020 Phys. Rev. B 102 085125
38 Wilson K G 1975 Rev. Mod. Phys. 47 773
40 Bulla R, Costi T A and Pruschke T 2008 Rev. Mod. Phys. 80 395
41 Zitko R and Pruschke T 2009 Phys. Rev. B 79 085106
42 Yoshida M, Whitaker M A and Oliveira L N 1990 Phys. Rev. B 41 9403
43 Oliveira W C and Oliveira L N 1990 Phys. Rev. B 49 11986
44 Campo V L and Oliveira L N 2005 Phys. Rev. B 72 104432
45 Garg A, Onuchic J N and Ambegaokarr V 1985 J. Chem. Phys. 83 4491
46 Xu D and Schulten K1992 The Photosynthetic Bacterial Reaction Center: II. Structure, Spectroscopy and Dynamics, ed. Breton J and Verméglio A (New York: Plenum Press)
47 Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357
48 Novais E and Baranger H U 2006 Phys. Rev. Lett. 97 040501
[1] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[2] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[3] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[4] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[5] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[6] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[7] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[8] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[9] Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军). Chin. Phys. B, 2021, 30(11): 110301.
[10] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[11] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[12] Effect of system-reservoir correlations on temperature estimation
Wen-Li Zhu(朱雯丽), Wei Wu(吴威), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(2): 020501.
[13] Non-equilibrium atomic simulation for Frenkel–Kontorova model with moving dislocation at finite temperature
Baiyili Liu(刘白伊郦) and Shaoqiang Tang(唐少强). Chin. Phys. B, 2020, 29(11): 110501.
[14] Atom-pair tunneling and quantum phase transition in asymmetry double-well trap in strong-interaction regime
Ji-Li Liu(刘吉利), Jiu-Qing Liang(梁九卿). Chin. Phys. B, 2019, 28(11): 110304.
[15] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
No Suggested Reading articles found!