|
|
Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature |
Ke Yang(杨珂) and Ning-Hua Tong(同宁华)† |
1 Department of Physics, Renmin University of China, Beijing 100072, China |
|
|
Abstract We use the full-density matrix numerical renormalization group method to calculate the equilibrium dynamical correlation function C(ω) of the spin operator σz at finite temperature for the sub-ohmic spin-boson model. A peak is observed at the frequency ωT∼ T in the curve of C(ω). The curve merges with the zero-temperature C(ω) in $\omega \gg \omega_\rm T$ and deviates significantly from the zero-temperature curve in ω «ω T.
|
Received: 15 October 2020
Revised: 05 November 2020
Accepted manuscript online: 15 December 2020
|
PACS:
|
05.10.Cc
|
(Renormalization group methods)
|
|
05.30.Jp
|
(Boson systems)
|
|
64.70.Tg
|
(Quantum phase transitions)
|
|
75.20.Hr
|
(Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374362 and 11974420), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 15XNLQ03). |
Corresponding Authors:
†Corresponding author. E-mail: nhtong@ruc.edu.cn
|
Cite this article:
Ke Yang(杨珂) and Ning-Hua Tong(同宁华) Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature 2021 Chin. Phys. B 30 040501
|
1 Caldeira A O and Leggett A J 1983 Ann. Mod. Phys. 149 374 2 Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1 3 Weiss U1993 Quantum Dissipative Systems (Singapore: World Scientific) 4 Chin A and Turlakov M 2006 Phys. Rev. B 73 075311 5 Anders F B, Bulla R,Vojta M 2007 Phys. Rev. Lett. 98 21042 6 Costi T A and McKenzie R H 2003 Phys. Rev. A 68 034301 7 Khveshchenko D V 2004 Phys. Rev. B 69 153311 8 Thorwart M and Hanggi P 2001 Phys. Rev. A 65 012309 9 Ruokola B and Ojanen T 2011 Phys. Rev. B 83 045417 10 Chin A, Prior J, Huelga S F and Plenio M B 2011 Phys. Rev. Lett. 107 160601 11 Bulla R, Tong N H and Vojta M 2003 Phys. Rev. Lett. 91 170601 12 Bulla R, Lee H J, Tong N H and Vojta M 2005 Phys. Rev. B 71 045122 13 Winter A, Rieger H, Vojta M and Bulla R 2009 Phys. Rev. Lett. 102 030601 14 Alvermann A and Fehske H 2009 Phys. Rev. Lett.102 150601 15 Lü Z G and Zheng H 2007 Phys. Rev. B 75 054302 16 Zhao C, Lü Z G and Zheng H 2011 Phys. Rev. E 84 011114 17 Zheng H and Lü Z G 2013 J. Chem. Phys. 138 174117 18 Wu N, Duan L, Li X and Zhao Y 2013 J. Chem. Phys. 138 084111 19 Wang L, Chen L, Zhou N and Zhao Y 2016 J. Chem. Phys. 144 024101 20 Zhang Y Y, Chen Q H and Wang K L 2010 Phys. Rev. B 81 121105 21 Duan C, Tang Z, Cao J and Wu J 2017 Phys. Rev. B 95 214308 22 Zhang H, Xu R X, Zheng X and Yan Y 2015 J. Chem. Phys. 142 024112 23 Yan Y A and Shao J 2016 Front. Phys. 11 110309 24 Kehrein S K and Mielke A 1996 Phys. Lett. A 219 313 25 Herbert S and Wilhelm Z 1999 J. Stat. Phys. 94 1037 26 Florens L, Freyn A, Venturelli D and Narayanan R 2011 Phys. Rev. B 84 155110 27 Zheng D C, Wan L and Tong N H 2016 Phys. Rev. B 98 115131 28 Zheng D C and Tong N H 2017 Chin. Phys. B 26 060502 29 Zheng D C and Tong N H 2017 Chin. Phys. B 26 060501 30 Sassetti M and Weiss U 1990 Phys. Rev. Lett. 65 2262 31 Bulla R, Costi T A and Vollhardt D 2001 Phys. Rev. B 64 045103 32 Hofstetter W 2000 Phys. Rev. Lett. 85 1508 33 Weichselbaum A 2012 Phys. Rev. B 86 245124 34 Anders F B and Schiller S 2005 Phys. Rev. Lett. 95 196801 35 Anders F B and Schiller S 2006 Phys. Rev. B 74 245113 36 Weichselbaum A and Delft J V 2006 Phys. Rev. Lett. 99 076402 37 Yang K and Tong N H 2020 Phys. Rev. B 102 085125 38 Wilson K G 1975 Rev. Mod. Phys. 47 773 40 Bulla R, Costi T A and Pruschke T 2008 Rev. Mod. Phys. 80 395 41 Zitko R and Pruschke T 2009 Phys. Rev. B 79 085106 42 Yoshida M, Whitaker M A and Oliveira L N 1990 Phys. Rev. B 41 9403 43 Oliveira W C and Oliveira L N 1990 Phys. Rev. B 49 11986 44 Campo V L and Oliveira L N 2005 Phys. Rev. B 72 104432 45 Garg A, Onuchic J N and Ambegaokarr V 1985 J. Chem. Phys. 83 4491 46 Xu D and Schulten K1992 The Photosynthetic Bacterial Reaction Center: II. Structure, Spectroscopy and Dynamics, ed. Breton J and Verméglio A (New York: Plenum Press) 47 Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357 48 Novais E and Baranger H U 2006 Phys. Rev. Lett. 97 040501 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|