Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 090504    DOI: 10.1088/1674-1056/abeef5
GENERAL Prev   Next  

Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy

Xiu-Xing Zhang(张修兴)1,†, Fang-Jv Li(李芳菊)1, Kai Wang(王凯)1, Jing Xue(薛晶)1, Guang-Wen Huo(霍广文)1, Ai-Ping Fang(方爱平)2, and Hong-Rong Li(李宏荣)2,‡
1 Department of Physics, Weinan Normal University, Wei'nan 714099, China;
2 School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  We investigate the nonequilibrium thermodynamics of a quenched XY spin chain with multi-spin interaction in a transverse field. The analytical expressions of both the average work and the relative entropy are obtained under different quenching parameters. The influences of the system parameters on the nonequilibrium thermodynamics are investigated. We find that at finite temperature the critical phenomenon induced by the multi-spin interaction and the external field can be revealed by the properties of the system nonequilibrium thermodynamics. In addition, our results indicate that the average work and the relative entropy can be used to detect both the existence and strength of the multi-spin interaction in the nonequlibrium system.
Keywords:  nonequilibrium thermodynamics      spin chain      multi-spin interaction  
Received:  23 October 2020      Revised:  10 March 2021      Accepted manuscript online:  16 March 2021
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  05.30.Rt (Quantum phase transitions)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  75.10.Pq (Spin chain models)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11304230), China Postdoctoral Science Foundation Funded Project (Grant No. 2014M562387), the Fund of the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Grant No. SKLIPR1908).
Corresponding Authors:  Xiu-Xing Zhang, Hong-Rong Li     E-mail:;

Cite this article: 

Xiu-Xing Zhang(张修兴), Fang-Jv Li(李芳菊), Kai Wang(王凯), Jing Xue(薛晶), Guang-Wen Huo(霍广文), Ai-Ping Fang(方爱平), and Hong-Rong Li(李宏荣) Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy 2021 Chin. Phys. B 30 090504

[1] del Rio L, Aberg J, Renner R, Dahlsten O and Vedral V 2011 Nature 474 61
[2] Aberg J 2013 Nat. Commun. 4 1925
[3] Mari A and Eisert J 2011 Phys. Rev. Lett. 108 120602
[4] Binder F, Correa L A, Gogolin C, Anders J and Adesso G (ed) 2019 Thermodynamics in the Quantum Regime (Berlin: Springer)
[5] Jarzynski C 1997 Phys. Rev. Lett. 78 2690
[6] Jarzynski C 1997 Phys. Rev. E 56 5018
[7] Crooks G E 1999 Phys. Rev. E 60 2721
[8] Crooks G E 2000 Phys. Rev. E 61 2361
[9] Mukamel S 2003 Phys. Rev. Lett. 90 170604
[10] Talker P, Lutz E and Hänggi P 2007 Phys. Rev. E 75 050102R
[11] Guo Z P and Quan H T 2015 Phys. Rev. E 92 012131
[12] Fei Z Y and Quan H T 2019 Phys. Rev. Res. 1 033175
[13] Campisi M and Fazio R 2016 Nat. Commun. 7 11895
[14] Zheng Y and Poletti D 2015 Phys. Rev. E 92 012110
[15] Peterson John P S, Batalhão Tiago B, Herrera M et al. 2019 Phys. Rev. Lett. 123 240601
[16] Beyer K, Luoma K and Strunz W T 2019 Phys. Rev. Lett. 123 250606
[17] Scopa S, Landi G T and Karevski D 2018 Phys. Rev. A 97 062121
[18] Chen J F, Sun C P and Dong H 2019 Phys. Rev. E 100 062140
[19] Chen J F, Sun C P and Dong H 2019 Phys. Rev. E 100 032144
[20] Linden N, Popescu S and Skrzypczyk P 2010 Phys. Rev. Lett. 105 130401
[21] Seah S, Nimmrichter S and Scarani V 2018 Phys. Rev. E 98 012131
[22] Hewgill A, González J O, Palao J P, et al. 2020 Phys. Rev. E 101 012109
[23] Rossini D, Andolina G M and Polini M 2019 Phys. Rev. B 100 115142
[24] Santos A C, Cakmak B, Campbell S and Zinner N T 2019 Phys. Rev. E 100 032107
[25] Silva A 2008 Phys. Rev. Lett. 101 120603
[26] Apollaro T J G, Francica G, Paternostro M, et al. 2015 Phys. Scr. 2015 014023
[27] Mascarenhas E, Braganca H, Dorner R, et al. 2014 Phys. Rev. E 89 062103
[28] De Luca A 2014 Phys. Rev. B 90 081403
[29] Paraan F N C and Silva A 2009 Phys. Rev. E 80 061130
[30] Shchadilova Y E, Ribeiro P and Haque M 2014 Phys. Rev. Lett. 112 070601
[31] Brunelli M, Xuereb A, Ferraro A, et al. 2015 New J. Phys. 17 035016
[32] Dora B, Bacsi A and Zarand G 2012 Phys. Rev. B 86 161109(R)
[33] Xu B M, Zou J, Guo L S and Kong X M 2018 Phys. Rev. A 97 052122
[34] Dorner R, Goold J, Cormick C, et al. 2012 Phys. Rev. Lett. 109 160601
[35] Bayocboc Jr F A and Paraan F N C 2015 Phys. Rev. E 92 032142
[36] Zhong M and Tong P Q 2015 Phys. Rev. E 91 032137
[37] Wang Q, Cao D and Quan H T 2018 Phys. Rev. E 98 022107
[38] Fusco L, Pigeon S, Apollaro T J G, et al. 2014 Phys. Rev. X 4 031029
[39] Dorner R, Clark S R, Heaney L, Fazio R, Goold J and Vedral V 2013 Phys. Rev. Lett. 110 230601
[40] Mazzola L, De Chiara G and Paternostro M 2013 Phys. Rev. Lett. 110 230602
[41] Sengupta K and Sen D 2009 Phys. Rev. A 80 032304
[42] Bastidas V B, Emary C, Schaller G and Brandes T 2012 Phys. Rev. A 86 063627
[43] Sotiriadis S, Gambassi A and Silva A 2013 Phys. Rev. E 87 052129
[44] Gambassi A and Silva A arXiv: 1106.2671
[45] Lou P, Wu W C and Chang M C 2004 Phys. Rev. B 70 064405
[46] Krokhmalskii T, Derzhko O, Stolze J and Verkholyak T 2008 Phys. Rev. B 77 174404
[47] Yang M F 2005 Phys. Rev. A 71 030302(R)
[48] Li Y C and Lin H Q 2011 Phys. Rev. A 83 052323
[49] Sachdev S 2000 Quantum Phase Transition (Cambridge: Cambridge University Press)
[50] Yuan Z G, Zhang P and Li S S 2007 Phys. Rev. A 76 042118
[51] Quan H T, Song Z, Liu X F, Zanardi P and Sun C P 2006 Phys. Rev. Lett. 96 140604
[52] Zanardi P, Quan H T, Wang X G and Sun C P 2007 Phys. Rev. A 75 032109
[53] Paunković N, Sacramento P D, Nogueira P, Vieira V R and Dugaev V K 2008 Phys. Rev. A 77 052302
[1] Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields
Jia-Sheng Dong(董家生), Pengcheng Lu(路鹏程), Pei Sun(孙佩), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), Kun Hao(郝昆), and Wen-Li Yang(杨文力). Chin. Phys. B, 2023, 32(1): 017501.
[2] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[3] Exact solution of an integrable quantum spin chain with competing interactions
Jian Wang(王健), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(11): 117501.
[4] Role of the spin anisotropy of the interchain interaction in weakly coupled antiferromagnetic Heisenberg chains
Yuchen Fan(樊宇辰), Rong Yu(俞榕). Chin. Phys. B, 2020, 29(5): 057505.
[5] Applicability of coupling strength estimation for linear chains of restricted access
He Feng(冯赫), Tian-Min Yan(阎天民), Yuhai Jiang(江玉海). Chin. Phys. B, 2020, 29(3): 030305.
[6] Dyson-Maleev theory of an X X Z ferrimagnetic spin chain with single-ion anisotropy
Yu-Ge Chen(陈宇戈), Yin-Xiang Li(李殷翔), Li-Jun Tian(田立君), Bin Chen(陈斌). Chin. Phys. B, 2018, 27(12): 127501.
[7] Exact solutions of an Ising spin chain with a spin-1 impurity
Xuchu Huang(黄旭初). Chin. Phys. B, 2017, 26(3): 037501.
[8] Quantum correlations dynamics of three-qubit states coupled to an XY spin chain:Role of coupling strengths
Shao-Ying Yin(尹少英), Qing-Xin Liu(刘庆欣), Jie Song(宋杰), Xue-Xin Xu(许学新), Ke-Ya Zhou(周可雅), Shu-Tian Liu(刘树田). Chin. Phys. B, 2017, 26(10): 100501.
[9] Optimal quantum parameter estimation of two-qutrit Heisenberg XY chain under decoherence
Hong-ying Yang(杨洪应), Qiang Zheng(郑强), Qi-jun Zhi(支启军). Chin. Phys. B, 2017, 26(1): 010601.
[10] Schwinger-boson approach to anisotropy ferrimagnetic chain with bond alternation
Li Yin-Xiang (李殷翔), Chen Bin (陈斌). Chin. Phys. B, 2015, 24(2): 027502.
[11] Non-Markovianity of the Heisenberg XY spin environment with Dzyaloshinskii-Moriya interaction
Xiang Jun-Dong (项俊东), Qin Li-Guo (秦立国), Tian Li-Jun (田立君). Chin. Phys. B, 2014, 23(11): 110305.
[12] Induced modification of geometric phase of a qubit coupled to an XY spin chain by the Dzyaloshinsky–Moriya interaction
Zhang Ai-Ping (张爱萍), Li Fu-Li (李福利). Chin. Phys. B, 2013, 22(3): 030308.
[13] Ferrimagnetism induced by asymmetrical ferromagnetic next-nearest-neighbour exchange interactions in an antiferromagnetic spin-1/2 zigzag chain
Wang Zhong-Long(王忠龙) and Fu Hua-Hua(傅华华) . Chin. Phys. B, 2011, 20(9): 097502.
[14] Scaling of entanglement entropy for spin chain with Dzyaloshinskii–Moriya interaction
Du Long(杜龙),Hou Jing-Min(侯净敏),Ding Jia-Yan(丁伽焱), Zhang Wen-Xin(张文新),Tian Zhi(田志),and Chen Ting-Ting(陈婷婷) . Chin. Phys. B, 2011, 20(2): 020306.
[15] Improving quantum state transfer in a general XY chain via the Dzyaloshinsky–Moriya interaction
Zhang Jian(张剑), Shao Bin(邵彬), Zou Jian(邹健), and Li Qian-Shu(李前树) . Chin. Phys. B, 2011, 20(10): 100307.
No Suggested Reading articles found!