Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 128701    DOI: 10.1088/1674-1056/23/12/128701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of A1 site occupation on dielectric and ferroelectric properties of Sr4CaRTi3Nb7O30 (R=Ce, Eu) tungsten bronze ceramics

Fang Yu-Jiao (方玉娇), Gong Gao-Shang (龚高尚), Gebru Zerihun, Yuan Song-Liu (袁松柳)
School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
Abstract  Sr4CaRTi3Nb7O30 (R=Ce, Eu) tungsten bronze ceramics are prepared by a standard solid state reaction method. The effects of A1 site occupation on the dielectric and ferroelectric properties of Sr4CaRTi3Nb7O30 (R=Ce, Eu) tetragonal tungsten bronzes are investigated. The Sr4CaCeTi3Nb7O30 shows a normal transition behavior due to the closer size ion occupation in A1 sites, which could suppress the distortion of B2 octahedra effectively. Sr4CaEuTi3Nb7O30 ceramic exhibits two dielectric anomalies, which might be related to the fact that the large radius difference between Ca2+ and Eu3+ could lead to the uneven distribution of Ca2+ and Eu3+ in A1 sites and form two slightly different kinds of compositions with different transition temperatures in the structure. Our results indicate that the ionic radius difference in A1 sites plays an important role in determining the dielectric and ferroelectric natures of the filled tungsten bronze ceramics. Polarization–electric field (PE) curves are evaluated at room temperature and both of them show hysteresis loops. Sr4CaCeTi3Nb7O30 shows a fat hysteresis loop, indicating the long-range ferroelectric order in the ceramic. The current density–electric field (JE) curves are measured at room temperature with a largest leakage current density of ~ 10-6 A/cm2, indicating that their leakage currents are rather low.
Keywords:  dielectric anomaly      relaxation      ferroelectricity  
Received:  22 May 2014      Revised:  25 June 2014      Accepted manuscript online: 
PACS:  87.19.rf (Dielectric properties)  
  31.70.Hq (Time-dependent phenomena: excitation and relaxation processes, and reaction rates)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174092) and the Key Project of Henan Provincial Educational Committee, China (Grant No. 14A140019).
Corresponding Authors:  Yuan Song-Liu     E-mail:  yuansl@hust.edu.cn

Cite this article: 

Fang Yu-Jiao (方玉娇), Gong Gao-Shang (龚高尚), Gebru Zerihun, Yuan Song-Liu (袁松柳) Effects of A1 site occupation on dielectric and ferroelectric properties of Sr4CaRTi3Nb7O30 (R=Ce, Eu) tungsten bronze ceramics 2014 Chin. Phys. B 23 128701

[1]Parida B N and Das P R 2014 J. Alloys Compd. 585 234
[2]Stennett M C, Reaney I M, Miles G C, Woodward D I, West A R, Kirk C A and Levin I 2007 J. Appl. Phys. 101 104114
[3]Prades M, Beltrań H, Maso Ń, Cordoncillo E and West A R 2008 J. Appl. Phys. 104 104118
[4]Zhu X L, Wu S Y and Chen X M 2007 Appl. Phys. Lett. 91 162906
[5]Zhu X L and Chen X M 2010 Appl. Phys. Lett. 96 032901
[6]Zheng X H and Chen X M 2003 Solid State Commun. 125 449
[7]Sun Y H, Chen X M and Zheng X H 2004 J. Appl. Phys. 96 7435
[8]Zhu X L, Liu X Q and Chen X M 2011 J. Am. Ceram. Soc. 94 1829
[9]Li K, Zhu X L, Liu X Q and Chen X M 2012 Appl. Phys. Lett. 100 012902
[10]Kirk C A, Stennett M C, Reaney I M and West A R 2002 J. Mater. Chem. 12 2609
[11]Levin I, Stennett M C, Miles G C, Woodward D I, West A R and Reaney I M 2006 Appl. Phys. Lett. 89 122908
[12]Zhu X L and Chen X M 2014 Chin. Phys. Lett. 31 015201
[13]Song W L, Cao M S and Zhou Y 2008 Chin. Phys. Lett. 25 1902
[14]Qi Y and Du A 2014 Chin. Phys. B 23 087502
[15]Xu Z, Gao J J, Yao X, Zhang C H and Zhu C J 2011 Chin. Phys. B 20 097702
[16]Uzma G 2014 Chin. Phys. B 23 057502
[17]Simon A and Ravez J 2006 C. R. Chim. 9 1268
[18]Kirk C A, Stennett M C, Reaney I M and West A R 2002 J. Mater. Chem. 12 2609
[19]Sun Y H, Chen X M and Zheng X H 2004 J. Appl. Phys. 96 7435
[20]Zhu X L, Li K, Rafiq M A, Liu X Q and Chen X M 2013 J. Appl. Phys. 114 124102
[21]Kamba S, Veljko S, Kempa M, Savinov M, Bovtun V, Vaněk P, Petzelt J, Stennett M C, Reaneyand I M and West A R 2005 J. Eur. Ceram. Soc. 25 3069
[22]Li K, Zhu X L, Liu X Q and Chen X M 2012 Appl. Phys. Lett. 101 042906
[23]Maier B, Mihailova B, Paulmann C, Ihringer J, Gospodinov M, Stosch R, Güttler B and Bismayer U 2009 Phys. Rev. B 79 224108
[24]Laulhe C, Pasturel A, Hippert F and Kreisel J 2010 Phys. Rev. B 82 132102
[25]Li K, Zhu X L, Liu X Q and Chen X M 2013 J. Appl. Phys. 114 044106
[1] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] Effect of conical intersection of benzene on non-adiabatic dynamics
Duo-Duo Li(李多多) and Song Zhang(张嵩). Chin. Phys. B, 2022, 31(8): 083103.
[4] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[5] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[6] Small activation entropy bestows high-stability of nanoconfined D-mannitol
Lin Cao(曹琳), Li-Jian Song(宋丽建), Ya-Ru Cao(曹亚茹), Wei Xu(许巍), Jun-Tao Huo(霍军涛), Yun-Zhuo Lv(吕云卓), and Jun-Qiang Wang(王军强). Chin. Phys. B, 2021, 30(7): 076103.
[7] Comprehensive studies on dielectric properties of p-methoxy benzylidene p-decyl aniline with function of temperature and frequency in planar geometry: A potential nematic liquid crystal for display devices
Pankaj Kumar Tripathi, Kunwar Vikram, Mithlesh Tiwari, and Ajay Shriram. Chin. Phys. B, 2021, 30(6): 064208.
[8] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[9] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[10] Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures
Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha. Chin. Phys. B, 2021, 30(2): 026401.
[11] Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer
Wei Shen(沈威), Yuanhui Pan(潘远辉), Shengnan Shen(申胜男), Hui Li(李辉), Siyuan Nie(聂思媛), and Jie Mei(梅杰). Chin. Phys. B, 2021, 30(11): 117503.
[12] Irradiation behavior and recovery effect of ferroelectric properties of PZT thin films
Yu Zhao(赵瑜), Wen-Yue Zhao(赵文悦), Dan-Dan Ju(琚丹丹), Yue-Yue Yao(姚月月), Hao Wang(王豪), Cheng-Yue Sun(孙承月), Ya-Zhou Peng(彭亚洲), Yi-Yong Wu(吴宜勇), and Wei-Dong Fei(费维栋). Chin. Phys. B, 2021, 30(10): 107702.
[13] Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics
Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵). Chin. Phys. B, 2021, 30(10): 107701.
[14] Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve
Xian-Jin Qi(祁先进), Ni-Na Yang(杨妮娜), Xiao-Xu Duan(段孝旭), and Xue-Zhu Li(李雪竹). Chin. Phys. B, 2021, 30(10): 107501.
[15] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
No Suggested Reading articles found!