Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer
Wei Shen(沈威)1,2,3,†, Yuanhui Pan(潘远辉)1,3,†, Shengnan Shen(申胜男)1,2,‡, Hui Li(李辉)1,2,§, Siyuan Nie(聂思媛)1, and Jie Mei(梅杰)4
1 School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China; 2 Research Institute of Wuhan University in Shenzhen, Shenzhen 518057, China; 3 Department of Quantum and Energy Materials, International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal; 4 School of Logistic Engineering, Wuhan University of Technology, Wuhan 430070, China
Abstract Two-dimensional multiferroics, which simultaneously possess ferroelectricity and magnetism in a single phase, are well-known to possess great potential applications in nanoscale memories and spintronics. On the basis of first-principles calculations, a CrNCl2 monolayer is reported as an intrinsic multiferroic. The CrNCl2 has an antiferromagnetic ground state, with a Néel temperature of about 88 K, and it exhibits an in-plane spontaneous polarization of 200 pC/m. The magnetic moments of CrNCl2 mainly come from the dxy orbital of the Cr cation, but the plane of the dxy orbital is perpendicular to the direction of the ferroelectric polarization, which hardly suppresses the occurrence of ferroelectricity. Therefore, the multiferroic exits in the CrNCl2. In addition, like CrNCl2, the CrNBr2 is an intrinsic multiferroic with antiferromagnetic-ferroelectric ground state while CrNI2 is an intrinsic multiferroic with ferromagnetic-ferroelectric ground state. These findings enrich the multiferroics in the two-dimensional system and enable a wide range of applications in nanoscale devices.
Fund: Project supported by the National Key R&D Program of China (Grant No. 2019YFB1704600), the International Cooperation Research Project of Shenzhen (Grant No. GJHZ20180413182004161), the Hubei Provincial Natural Science Foundation of China (Grant No. 2020CFA032), the National Natural Science Foundation of China (Grant No. 51805395), and the China Scholarship Council (Grant No. 201906270142).
Corresponding Authors:
Shengnan Shen, Hui Li
E-mail: shen_shengnan@whu.edu.cn;li_hui@whu.edu.cn
Cite this article:
Wei Shen(沈威), Yuanhui Pan(潘远辉), Shengnan Shen(申胜男), Hui Li(李辉), Siyuan Nie(聂思媛), and Jie Mei(梅杰) Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer 2021 Chin. Phys. B 30 117503
[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science294 1488 [2] Fert A 2008 Angew. Chemie Int. Ed.47 5956 [3] Wang X, Du K, Fredrik Liu Y Y, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q 2016 2D Mater.3 031009 [4] Li X and Yang J 2016 Natl. Sci. Rev.3 365 [5] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science306 666 [6] Sun Q, Dai Y, Ma Y, Wei W and Huang B 2015 RSC Adv.5 33037 [7] Carvalho A, Wang M, Zhu X, Rodin A S, Su H and Castro Neto A H 2016 Nat. Rev. Mater.1 16061 [8] González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F and Brihuega I 2016 Science352 437 [9] Li B, Xing T, Zhong M, Huang L, Lei N, Zhang J, Li J and Wei Z 2017 Nat. Commun.8 1958 [10] Tong Y, Guo Y, Mu K, Shan H, Dai J, Liu Y, Sun Z, Zhao A, Zeng X C, Wu C and Xie Y 2017 Adv. Mater.29 1703123 [11] Radhakrishnan S, Das D, Samanta A, de los Reyes C A, Deng L, Alemany L B, Weldeghiorghis T K, Khabashesku V N, Kochat V, Jin Z, Sudeep P M, Martí A A, Chu C W, Roy A, Tiwary C S, Singh A K and Ajayan P M 2017 Sci. Adv.3 e1700842 [12] Zhou Y, Wang Z, Yang P, Zu X, Yang L, Sun X and Gao F 2012 ACS Nano6 9727 [13] Feng Y P, Shen L, Yang M, Wang A, Zeng M, Wu Q, Chintalapati S and Chang C R 2017 WIREs Comput. Mol. Sci.7 e1313 [14] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature546 265 [15] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature546 270 [16] Xu Z and Zhu H 2018 J. Phys. Chem. C122 14918 [17] Wu Q, Zhang Y, Zhou Q, Wang J and Zeng X C 2018 J. Phys. Chem. Lett.9 4260 [18] Zhu Y, Kong X, Rhone T D and Guo H 2018 Phys. Rev. Mater.2 081001 [19] Hu T and Kan E J 2018 Acta Phys. Sin.67 157701 (in Chinese) [20] Naber R C G, Asadi K, Blom P W M, de Leeuw D M and de Boer B 2010 Adv. Mater.22 933 [21] Scott J F and Paz de Araujo C A 1989 Science246 1400 [22] Mathews S, Ramesh R, Venkatesan T and Benedetto J 1997 Science276 238 [23] Naber R C G, Tanase C, Blom P W M, Gelinck G H, Marsman A W, Touwslager F J, Setayesh S and de Leeuw D M 2005 Nat. Mater.4 243 [24] Wen Z, Li C, Wu D, Li A and Ming N 2013 Nat. Mater.12 617 [25] Catalan G and Scott J F 2009 Adv. Mater.21 2463 [26] Scott J F 2007 Science315 954 [27] Ahn C H, Rabe K M and Triscone J M 2004 Science303 488 [28] Fei R, Kang W and Yang L 2016 Phys. Rev. Lett.117 97601 [29] Fong D D, Stephenson G B, Streiffer S K, Eastman J A, Auciello O, Fuoss P H and Thompson C 2004 Science304 1650 [30] Junquera J and Ghosez P 2003 Nature422 506 [31] Shirodkar S N and Waghmare U V 2014 Phys. Rev. Lett.112 157601 [32] Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X and Ji S H 2016 Science353 274 [33] Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J and Liu Z 2016 Nat. Commun.7 12357 [34] Eerenstein W, Mathur N D and Scott J F 2006 Nature442 759 [35] Cheong S W and Mostovoy M 2007 Nat. Mater.6 13 [36] Ye Q, Shen Y, Yuan Y, Zhao Y F and Duan C G 2020 Acta Phys. Sin.69 217710 (in Chinese) [37] Wang K F, Liu J M and Ren Z F 2009 Adv. Phys.58 321 [38] Dong S, Liu J M, Cheong S W and Ren Z 2015 Adv. Phys.64 519 [39] Zhang J J, Lin L, Zhang Y, Wu M, Yakobson B I and Dong S 2018 J. Am. Chem. Soc.140 9768 [40] Huang C, Du Y, Wu H, Xiang H, Deng K and Kan E 2018 Phys. Rev. Lett.120 147601 [41] Ai H, Song X, Qi S, Li W and Zhao M 2019 Nanoscale11 1103 [42] Tan H, Li M, Liu H, Liu Z, Li Y and Duan W 2019 Phys. Rev. B99 195434 [43] Goodenough J B 1955 Phys. Rev.100 564 [44] Kresse G and Furthmüller J 1996 Comput. Mater. Sci.6 15 [45] Kresse G and Furthmüller J 1996 Phys. Rev. B54 11169 [46] Blöchl P E 1994 Phys. Rev. B50 17953 [47] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865 [48] Monkhorst H J and Pack J D 1976 Phys. Rev. B13 5188 [49] Martyna G J, Klein M L and Tuckerman M 1992 J. Chem. Phys.97 2635 [50] King-Smith R D and Vanderbilt D 1993 Phys. Rev. B47 1651 [51] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys.113 9901 [52] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B57 1505 [53] Goodenough J B 1958 J. Phys. Chem. Solids6 287 [54] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science299 1719 [55] Singh S, Garcia-Castro A C, Valencia-Jaime I, Muñoz F and Romero A H 2016 Phys. Rev. B94 161116 [56] Hill N A 2000 J. Phys. Chem. B104 6694
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.