Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 117503    DOI: 10.1088/1674-1056/ac0787
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer

Wei Shen(沈威)1,2,3,†, Yuanhui Pan(潘远辉)1,3,†, Shengnan Shen(申胜男)1,2,‡, Hui Li(李辉)1,2,§, Siyuan Nie(聂思媛)1, and Jie Mei(梅杰)4
1 School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China;
2 Research Institute of Wuhan University in Shenzhen, Shenzhen 518057, China;
3 Department of Quantum and Energy Materials, International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal;
4 School of Logistic Engineering, Wuhan University of Technology, Wuhan 430070, China
Abstract  Two-dimensional multiferroics, which simultaneously possess ferroelectricity and magnetism in a single phase, are well-known to possess great potential applications in nanoscale memories and spintronics. On the basis of first-principles calculations, a CrNCl2 monolayer is reported as an intrinsic multiferroic. The CrNCl2 has an antiferromagnetic ground state, with a Néel temperature of about 88 K, and it exhibits an in-plane spontaneous polarization of 200 pC/m. The magnetic moments of CrNCl2 mainly come from the dxy orbital of the Cr cation, but the plane of the dxy orbital is perpendicular to the direction of the ferroelectric polarization, which hardly suppresses the occurrence of ferroelectricity. Therefore, the multiferroic exits in the CrNCl2. In addition, like CrNCl2, the CrNBr2 is an intrinsic multiferroic with antiferromagnetic-ferroelectric ground state while CrNI2 is an intrinsic multiferroic with ferromagnetic-ferroelectric ground state. These findings enrich the multiferroics in the two-dimensional system and enable a wide range of applications in nanoscale devices.
Keywords:  two-dimensional      multiferroic      CrNCl2      monolayer      magnetism      ferroelectricity  
Received:  02 February 2021      Revised:  24 March 2021      Accepted manuscript online:  03 June 2021
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  77.55.Nv (Multiferroic/magnetoelectric films)  
  82.45.Mp (Thin layers, films, monolayers, membranes)  
  63.20.dk (First-principles theory)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2019YFB1704600), the International Cooperation Research Project of Shenzhen (Grant No. GJHZ20180413182004161), the Hubei Provincial Natural Science Foundation of China (Grant No. 2020CFA032), the National Natural Science Foundation of China (Grant No. 51805395), and the China Scholarship Council (Grant No. 201906270142).
Corresponding Authors:  Shengnan Shen, Hui Li     E-mail:  shen_shengnan@whu.edu.cn;li_hui@whu.edu.cn

Cite this article: 

Wei Shen(沈威), Yuanhui Pan(潘远辉), Shengnan Shen(申胜男), Hui Li(李辉), Siyuan Nie(聂思媛), and Jie Mei(梅杰) Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer 2021 Chin. Phys. B 30 117503

[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[2] Fert A 2008 Angew. Chemie Int. Ed. 47 5956
[3] Wang X, Du K, Fredrik Liu Y Y, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q 2016 2D Mater. 3 031009
[4] Li X and Yang J 2016 Natl. Sci. Rev. 3 365
[5] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[6] Sun Q, Dai Y, Ma Y, Wei W and Huang B 2015 RSC Adv. 5 33037
[7] Carvalho A, Wang M, Zhu X, Rodin A S, Su H and Castro Neto A H 2016 Nat. Rev. Mater. 1 16061
[8] González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F and Brihuega I 2016 Science 352 437
[9] Li B, Xing T, Zhong M, Huang L, Lei N, Zhang J, Li J and Wei Z 2017 Nat. Commun. 8 1958
[10] Tong Y, Guo Y, Mu K, Shan H, Dai J, Liu Y, Sun Z, Zhao A, Zeng X C, Wu C and Xie Y 2017 Adv. Mater. 29 1703123
[11] Radhakrishnan S, Das D, Samanta A, de los Reyes C A, Deng L, Alemany L B, Weldeghiorghis T K, Khabashesku V N, Kochat V, Jin Z, Sudeep P M, Martí A A, Chu C W, Roy A, Tiwary C S, Singh A K and Ajayan P M 2017 Sci. Adv. 3 e1700842
[12] Zhou Y, Wang Z, Yang P, Zu X, Yang L, Sun X and Gao F 2012 ACS Nano 6 9727
[13] Feng Y P, Shen L, Yang M, Wang A, Zeng M, Wu Q, Chintalapati S and Chang C R 2017 WIREs Comput. Mol. Sci. 7 e1313
[14] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[15] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[16] Xu Z and Zhu H 2018 J. Phys. Chem. C 122 14918
[17] Wu Q, Zhang Y, Zhou Q, Wang J and Zeng X C 2018 J. Phys. Chem. Lett. 9 4260
[18] Zhu Y, Kong X, Rhone T D and Guo H 2018 Phys. Rev. Mater. 2 081001
[19] Hu T and Kan E J 2018 Acta Phys. Sin. 67 157701 (in Chinese)
[20] Naber R C G, Asadi K, Blom P W M, de Leeuw D M and de Boer B 2010 Adv. Mater. 22 933
[21] Scott J F and Paz de Araujo C A 1989 Science 246 1400
[22] Mathews S, Ramesh R, Venkatesan T and Benedetto J 1997 Science 276 238
[23] Naber R C G, Tanase C, Blom P W M, Gelinck G H, Marsman A W, Touwslager F J, Setayesh S and de Leeuw D M 2005 Nat. Mater. 4 243
[24] Wen Z, Li C, Wu D, Li A and Ming N 2013 Nat. Mater. 12 617
[25] Catalan G and Scott J F 2009 Adv. Mater. 21 2463
[26] Scott J F 2007 Science 315 954
[27] Ahn C H, Rabe K M and Triscone J M 2004 Science 303 488
[28] Fei R, Kang W and Yang L 2016 Phys. Rev. Lett. 117 97601
[29] Fong D D, Stephenson G B, Streiffer S K, Eastman J A, Auciello O, Fuoss P H and Thompson C 2004 Science 304 1650
[30] Junquera J and Ghosez P 2003 Nature 422 506
[31] Shirodkar S N and Waghmare U V 2014 Phys. Rev. Lett. 112 157601
[32] Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X and Ji S H 2016 Science 353 274
[33] Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J and Liu Z 2016 Nat. Commun. 7 12357
[34] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
[35] Cheong S W and Mostovoy M 2007 Nat. Mater. 6 13
[36] Ye Q, Shen Y, Yuan Y, Zhao Y F and Duan C G 2020 Acta Phys. Sin. 69 217710 (in Chinese)
[37] Wang K F, Liu J M and Ren Z F 2009 Adv. Phys. 58 321
[38] Dong S, Liu J M, Cheong S W and Ren Z 2015 Adv. Phys. 64 519
[39] Zhang J J, Lin L, Zhang Y, Wu M, Yakobson B I and Dong S 2018 J. Am. Chem. Soc. 140 9768
[40] Huang C, Du Y, Wu H, Xiang H, Deng K and Kan E 2018 Phys. Rev. Lett. 120 147601
[41] Ai H, Song X, Qi S, Li W and Zhao M 2019 Nanoscale 11 1103
[42] Tan H, Li M, Liu H, Liu Z, Li Y and Duan W 2019 Phys. Rev. B 99 195434
[43] Goodenough J B 1955 Phys. Rev. 100 564
[44] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[45] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[46] Blöchl P E 1994 Phys. Rev. B 50 17953
[47] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[48] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[49] Martyna G J, Klein M L and Tuckerman M 1992 J. Chem. Phys. 97 2635
[50] King-Smith R D and Vanderbilt D 1993 Phys. Rev. B 47 1651
[51] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[52] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[53] Goodenough J B 1958 J. Phys. Chem. Solids 6 287
[54] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719
[55] Singh S, Garcia-Castro A C, Valencia-Jaime I, Muñoz F and Romero A H 2016 Phys. Rev. B 94 161116
[56] Hill N A 2000 J. Phys. Chem. B 104 6694
[1] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[2] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[3] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[8] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[9] Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions
Qin Wang(汪琴), Jie Zhang(张杰), Jierui Huang(黄杰瑞), Jinan Shi(时金安), Shuai Zhang(张帅), Hui Guo(郭辉), Li Huang(黄立), Hong Ding(丁洪), Wu Zhou(周武), Yan-Fang Zhang(张艳芳), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(1): 016102.
[10] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[11] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[12] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[13] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[14] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[15] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
No Suggested Reading articles found!