INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Resonance properties of THz plasmonic dipole-bowtie antenna array: The critical role of the substrate |
Yang Yu-Ping (杨玉平)a b, Ranjan Singhb, Zhang Wei-Li (张伟力)b |
a School of Science, Minzu University of China, Beijing 100081, China; b School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA |
|
|
Abstract Subwavelength arrays of dipole-bowtie antennas are designed and characterized using terahertz time-domain spectroscopy (THz-TDS) and finite element method (FEM) simulations. Two different substrates, silicon and mylar with an order of magnitude difference between their thickness values are used to study the resonance properties of the antennas. The 640-μm thick silicon substrate supports a sharper fundamental mode resonance. We discover that higher-order Fabry–Perot resonances can be excited only in 24-μm thin mylar substrates and show much higher sensitivity to dielectric changes in the environment and the geometrical parameters of the antennas than the fundamental dipole resonance.
|
Received: 17 June 2014
Revised: 18 August 2014
Accepted manuscript online:
|
PACS:
|
87.50.U-
|
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
52.40.Fd
|
(Plasma interactions with antennas; plasma-filled waveguides)
|
|
Fund: Project partly supported by the National Natural Science Foundation of China (Grant Nos. 11104360, 11204191, and 11374378), the National Special Fund for the Development of Major Research Equipment and Instruments, China (Grant No. 2012YQ14000508), and the Technology Foundation for Selected Overseas Chinese Scholar. |
Corresponding Authors:
Yang Yu-Ping
E-mail: ypyang_cun@126.com
|
Cite this article:
Yang Yu-Ping (杨玉平), Ranjan Singh, Zhang Wei-Li (张伟力) Resonance properties of THz plasmonic dipole-bowtie antenna array: The critical role of the substrate 2014 Chin. Phys. B 23 128702
|
|
| [1] | Crozier K B, Sundaramurthy A, Kino G S and Quate C F 2003 J. Appl. Phys. 94 4632
|
|
| [2] | Bharadwaj P, Deutsch B and Novotny L 2009 Adcances in Optics and Photonics 1 438
|
|
| [3] | Schnell M, García-Etxarri A, Huber A J, Crozier K, Aizpurua J and Hillenbrand R 2009 Nat. Photon. 3 287
|
|
| [4] | Mühlschlegel P, Eisler H J, Martin O J F, Hecht B and Pohl D W 2005 Science 308 1607
|
|
| [5] | Sundaramurthy A, Schuck P J, Conley N R, Fromm D P, Kino G S and Moerner W E 2006 Nano. Lett. 6 355
|
|
| [6] | Wang L, Uppuluri S M, Jin E X and Xu X 2006 Nano. Lett. 6 361
|
|
| [7] | Schuck P J, Fromm D P, Sundaramurthy A, Kino G S and Moerner W E 2005 Phys. Rev. Lett. 94 017402
|
|
| [8] | Bakker R M, Yuan H K, Liu Z, Drachev V, Kildishev A V, Shalaev V M, Pedersen R H, Gresillon S and Boltasseva A 2008 Appl. Phys. Lett. 92 043101
|
|
| [9] | Fromm D P, Sundatamurthy A, Schuck P J, Kino G and Moerner W E 2004 Nano. Lett. 4 957
|
|
| [10] | Sundaramurthy A, Crozier K B and Kino G S 2005 Phys. Rev. B 72 165409
|
|
| [11] | Laman N and Grischkowsky D 2008 Appl. Phys. Lett. 93 051105
|
|
| [12] | Yang Y and Grischkowsky D 2013 IEEE Transation on Terahertz Science and Technology 3 151
|
|
| [13] | Yang Y, Zhang Z, Shi Y, Feng S, Wang W 2010 Chin. Phys. B 19 043302
|
|
| [14] | Yang Y, Feng S, Feng H, Pan X, Wang Y, Wang W 2011 Acta Phys. Sin. 60 027802 (in Chinese)
|
|
| [15] | Yang Y, Singh R and Zhang W 2011 Opt. Lett. 36 2901
|
|
| [16] | Grischkowsky D, Keiding S, van Exter M and Fattinger C 1990 J. Opt. Soc. Am. B 7 2006
|
|
| [17] | Zhang W 2008 Eur. Phys. J. Appl. Phys. 43 1
|
|
| [18] | Aizpurua J, Bryant G W, Richter L J García de Abajo F J, Kelley B K and Mallouk T 2005 Phys. Rev. B 71 235420
|
|
| [19] | Ghenuche P, Cherukulappurath S, Taminiau T H, van Hulst N F and Quidant R 2008 Phys. Rev. Lett. 101 116805
|
|
| [20] | Fischer H and Martin O J F 2008 Opt. Express 16 9144
|
|
| [21] | Ding W, Bachelot R, Kostcheev S, Royer P and Espiau de Lamaestre R 2010 J. Appl. Phys. 108 124314
|
|
| [22] | Barnard E S, White J S, Chandran A and Brongerma M L 2008 Opt. Express 16 16529
|
|
| [23] | Jeon T, Grischkowsky D, Mukherjee A K and Menon R 2001 Appl. Phys. Lett. 79 4142
|
|
| [24] | Dorney T D, Bataniuk G and Mittleman M 2001 J. Opt. Soc. Am. A 18 1562
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|