|
|
Exact solutions of the nonlinear differential—difference equations associated with the nonlinear electrical transmission line through a variable-coefficient discrete (G'/G)-expansion method |
Saïdou Abdoulkarya, Alidou Mohamadoub c, Ousmanou Dafounansoub, Serge Yamigno Dokaa |
a Département des Sciences Physiques, Ecole Normale Supérieure, Université de Maroua, P. O. Box 55, Maroua, Cameroon; b Nonlinear and Complex Systems Group, Faculty of Science, University of Douala, P. O. Box 24157, Douala, Cameroon; c The Abdus Salam International Center for Theoretical Physics, P. O. Box 538, Strada Costiera 11, I-34014, Trieste, Italy |
|
|
Abstract We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete (G'/G)-expansion method, we solve the nonlinear differential–difference equations associated with the network. We obtain some exact traveling wave solutions which include hyperbolic function solution, trigonometric function solution, rational solutions with arbitrary function, bright as well as dark solutions.
|
Received: 26 January 2014
Revised: 19 June 2014
Accepted manuscript online:
|
PACS:
|
05.45.Yv
|
(Solitons)
|
|
04.20.Jb
|
(Exact solutions)
|
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
Corresponding Authors:
Saïdou Abdoulkary, Alidou Mohamadou
E-mail: elsaidais@yahoo.fr;mohdoufr@yahoo.fr
|
Cite this article:
Saïdou Abdoulkary, Alidou Mohamadou, Ousmanou Dafounansou, Serge Yamigno Doka Exact solutions of the nonlinear differential—difference equations associated with the nonlinear electrical transmission line through a variable-coefficient discrete (G'/G)-expansion method 2014 Chin. Phys. B 23 120506
|
|
| [1] | Christodoulides D N, Lederer F and Silberberg Y 2003 Nature 424 817
|
|
| [2] | Ablowitz M J and Ladik J F 1976 J. Math. Phys. 17 1011
|
|
| [3] | Johansson M, Aubry S, Gaididei Y B, Christiansen P L and Rasmussen K ø 1998 Physica D 119 115
|
|
| [4] | Kevrekidis P G, Rasmussen K ø and Bishop A R 2001 Int. J. Mod. Phys. B 15 2833
|
|
| [5] | Malomed B A and Weinstein M I 1996 Phys. Lett. A 220 91
|
|
| [6] | Hirota R and Suzuki K 1970 J. Phys. Soc. Jpn. 28 1366
|
|
| [7] | Marquié P, Bilbault J M and Remoissenet M 1995 Phys. Rev. E 51 6127
|
|
| [8] | Abdoulkary S, Beda T, Ousmanou D, Wembe T E and Mohamadou A 2013 J. Mod. Phys. Appl. 2 69
|
|
| [9] | Abdoulkary S, Mohamadou A and Beda T 2011 Commun. Nonlinear Sci. Numer. Simul. 16 3525
|
|
| [10] | Stearret R and English L Q 2007 J. Phys. D: Appl. Phys. 40 5394
|
|
| [11] | English L Q, Basu Thakur R and Stearrett R 2008 Phys. Rev. E 77 066601
|
|
| [12] | English L Q, Palmero F, Candiani P, Cuevas J, Carretero-González R, Kevrekidis P G and Sievers A J 2012 Phys. Rev. Lett. 108 084101
|
|
| [13] | Ndzana F II, Mohamadou A and Kofane T C 2009 Phys. Rev. E 79 047201
|
|
| [14] | Abdoulkary S, Beda T, Doka Y S, Ndzana F II, Kavitha L and A Mohamadou 2012 J. Mod. Phys. 3 438
|
|
| [15] | He J S, Xu S W, Ruderman M S and Erdélyi R 2014 Chin. Phys. Lett. 31 010502
|
|
| [16] | Kenfack-Jiotsa A and Tala-Tebue E 2011 J. Phys. Soc. Jpn. 80 034003
|
|
| [17] | Tala-Tebue E and Kenfack-Jiotsa A 2013 J. Mod. Phys. 4 746
|
|
| [18] | Xie F and Wang J 2006 Chaos, Solitons and Fractals 27 1067
|
|
| [19] | Lei Y and Lou S Y 2013 Chin. Phys. Lett. 30 60202
|
|
| [20] | Ouyang S G 2013 Acta Phys. Sin. 62 040504 (in Chinese)
|
|
| [21] | Wu J P and Geng X G 2013 Chin. Phys. Lett. 30 60502
|
|
| [22] | Xu L L and Chen H T 2013 Acta Phys. Sin. 62 090204 (in Chinese)
|
|
| [23] | Hai W H, Deng Y and Li Z J 2013 Chin. Phys. B 22 090505
|
|
| [24] | Chen C L and Lou S Y 2013 Chin. Phys. Lett. 30 110202
|
|
| [25] | Wan W J, Zhang G Y and Liu C F 2013 Acta Phys. Sin. 62 200306 (in Chinese)
|
|
| [26] | Zhu J Y and Geng X G 2013 Chin. Phys. Lett. 30 080204
|
|
| [27] | Yang J M, Li C Z, Li T T and Cheng Z N 2013 Chin. Phys. Lett. 30 104201
|
|
| [28] | Li Y Q, Chen J C, Chen Y and Lou S Y 2014 Chin. Phys. Lett. 31 010201
|
|
| [29] | Li N and Liu X Q 2013 Acta Phys. Sin. 62 160203 (in Chinese)
|
|
| [30] | Wan W J, Zhang G Y and Liu C F 2013 Acta Phys. Sin. 62 200306 (in Chinese)
|
|
| [31] | Cheng J J and Zhang H Q 2013 Acta Phys. Sin. 62 200504 (in Chinese)
|
|
| [32] | Wang X, Chen Y and Dong Z Z 2014 Chin. Phys. B 23 010201
|
|
| [33] | Li X, Fan H L and Fan X F 2014 Chin. Phys. B 23 020201
|
|
| [34] | Chen J C, Li B and Chen Y 2013 Chin. Phys. B 22 110306
|
|
| [35] | Dai C and Zhang J 2006 Chaos, Solitons and Fractals 27 1042
|
|
| [36] | Slobodan Z, Annamalai M, Slobodan Z and Louis K 2014 Chin. Phys. B 23 020504
|
|
| [37] | Ma Z Y, Hu Y H and Lan J C 2008 Chaos, Solitons and Fractals 36 303
|
|
| [38] | He J H and Wu X H 2006 Chaos, Solitons and Fractals 30 700
|
|
| [39] | Zhu S D 2008 Phys. Lett. A 372 654
|
|
| [40] | Tang B, He Y, Wei L and Wang S 2011 Phys. Lett. A 375 3355
|
|
| [41] | Akbar M A, Ali N H M and Mohyud-Din S T 2013 Springer Plus 2 327
|
|
| [42] | Shakeel M and Mohyud-Din S T 2013 Int. J. Mod. Math. Sci. 6 160
|
|
| [43] | Alam M N, Akbar M A and Mohyud-Din S T 2014 Alexandria Engineering Journal (Elsevier) 53 233
|
|
| [44] | Bekir A and Güner Ö 2013 Chin. Phys. B 22 110202
|
|
| [45] | Alam M N, Akbar M A and Mohyud-Din S T 2014 Chin. Phys. B 23 020203
|
|
| [46] | Remoissenet M 1999 Waves Called Solitons, 3rd edn. (Berlin: Springer-Verlag)
|
|
| [47] | Mohyud-Din S T, Yildirim A and Sariaydin S 2011 Int. J. Numer. Methods Heat Fluid Flow 21 272
|
|
| [48] | Mohyud-Din S T, Yildirim A and Sariaydin S 2011 Int. J. Numer. Methods Heat Fluid Flow 21 822
|
|
| [49] | Kivshar Y S 1993 IEEE J. Quantum Electron. 29 250
|
|
| [50] | Weiner A M 1992 Optical Solitons: Theory and Experiment (Cambridge: Cambridge University, Press)
|
|
| [51] | Zhang X F, Yang Q, Zhang J F, Chen X Z and Liu W M 2008 Phys. Rev. A 77 023613
|
|
| [52] | Luther-Davies B and Yang X P 1992 Opt. Lett. 17 1755
|
|
| [53] | Swartzlander G A 1992 Opt. Lett. 17 493
|
|
| [54] | Luther-Davies B and Yang X P 1992 Opt. Lett. 17 496
|
|
| [55] | Krökel D, Halas N J, Giuliani G and Grischkowsky D 1988 Phys. Rev. Lett. 60 29
|
|
| [56] | Kivshar Y S, Haelterman M, Emplit P and Hamaide J P 1994 Opt. Lett. 19 19
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|