Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 120506    DOI: 10.1088/1674-1056/23/12/120506
GENERAL Prev   Next  

Exact solutions of the nonlinear differential—difference equations associated with the nonlinear electrical transmission line through a variable-coefficient discrete (G'/G)-expansion method

Saïdou Abdoulkarya, Alidou Mohamadoub c, Ousmanou Dafounansoub, Serge Yamigno Dokaa
a Département des Sciences Physiques, Ecole Normale Supérieure, Université de Maroua, P. O. Box 55, Maroua, Cameroon;
b Nonlinear and Complex Systems Group, Faculty of Science, University of Douala, P. O. Box 24157, Douala, Cameroon;
c The Abdus Salam International Center for Theoretical Physics, P. O. Box 538, Strada Costiera 11, I-34014, Trieste, Italy
Abstract  We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete (G'/G)-expansion method, we solve the nonlinear differential–difference equations associated with the network. We obtain some exact traveling wave solutions which include hyperbolic function solution, trigonometric function solution, rational solutions with arbitrary function, bright as well as dark solutions.
Keywords:  nonlinear transmission line      discrete (G'/G)-expansion method      solitary waves  
Received:  26 January 2014      Revised:  19 June 2014      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  04.20.Jb (Exact solutions)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Corresponding Authors:  Saïdou Abdoulkary, Alidou Mohamadou     E-mail:  elsaidais@yahoo.fr;mohdoufr@yahoo.fr

Cite this article: 

Saïdou Abdoulkary, Alidou Mohamadou, Ousmanou Dafounansou, Serge Yamigno Doka Exact solutions of the nonlinear differential—difference equations associated with the nonlinear electrical transmission line through a variable-coefficient discrete (G'/G)-expansion method 2014 Chin. Phys. B 23 120506

[1]Christodoulides D N, Lederer F and Silberberg Y 2003 Nature 424 817
[2]Ablowitz M J and Ladik J F 1976 J. Math. Phys. 17 1011
[3]Johansson M, Aubry S, Gaididei Y B, Christiansen P L and Rasmussen K ø 1998 Physica D 119 115
[4]Kevrekidis P G, Rasmussen K ø and Bishop A R 2001 Int. J. Mod. Phys. B 15 2833
[5]Malomed B A and Weinstein M I 1996 Phys. Lett. A 220 91
[6]Hirota R and Suzuki K 1970 J. Phys. Soc. Jpn. 28 1366
[7]Marquié P, Bilbault J M and Remoissenet M 1995 Phys. Rev. E 51 6127
[8]Abdoulkary S, Beda T, Ousmanou D, Wembe T E and Mohamadou A 2013 J. Mod. Phys. Appl. 2 69
[9]Abdoulkary S, Mohamadou A and Beda T 2011 Commun. Nonlinear Sci. Numer. Simul. 16 3525
[10]Stearret R and English L Q 2007 J. Phys. D: Appl. Phys. 40 5394
[11]English L Q, Basu Thakur R and Stearrett R 2008 Phys. Rev. E 77 066601
[12]English L Q, Palmero F, Candiani P, Cuevas J, Carretero-González R, Kevrekidis P G and Sievers A J 2012 Phys. Rev. Lett. 108 084101
[13]Ndzana F II, Mohamadou A and Kofane T C 2009 Phys. Rev. E 79 047201
[14]Abdoulkary S, Beda T, Doka Y S, Ndzana F II, Kavitha L and A Mohamadou 2012 J. Mod. Phys. 3 438
[15]He J S, Xu S W, Ruderman M S and Erdélyi R 2014 Chin. Phys. Lett. 31 010502
[16]Kenfack-Jiotsa A and Tala-Tebue E 2011 J. Phys. Soc. Jpn. 80 034003
[17]Tala-Tebue E and Kenfack-Jiotsa A 2013 J. Mod. Phys. 4 746
[18]Xie F and Wang J 2006 Chaos, Solitons and Fractals 27 1067
[19]Lei Y and Lou S Y 2013 Chin. Phys. Lett. 30 60202
[20]Ouyang S G 2013 Acta Phys. Sin. 62 040504 (in Chinese)
[21]Wu J P and Geng X G 2013 Chin. Phys. Lett. 30 60502
[22]Xu L L and Chen H T 2013 Acta Phys. Sin. 62 090204 (in Chinese)
[23]Hai W H, Deng Y and Li Z J 2013 Chin. Phys. B 22 090505
[24]Chen C L and Lou S Y 2013 Chin. Phys. Lett. 30 110202
[25]Wan W J, Zhang G Y and Liu C F 2013 Acta Phys. Sin. 62 200306 (in Chinese)
[26]Zhu J Y and Geng X G 2013 Chin. Phys. Lett. 30 080204
[27]Yang J M, Li C Z, Li T T and Cheng Z N 2013 Chin. Phys. Lett. 30 104201
[28]Li Y Q, Chen J C, Chen Y and Lou S Y 2014 Chin. Phys. Lett. 31 010201
[29]Li N and Liu X Q 2013 Acta Phys. Sin. 62 160203 (in Chinese)
[30]Wan W J, Zhang G Y and Liu C F 2013 Acta Phys. Sin. 62 200306 (in Chinese)
[31]Cheng J J and Zhang H Q 2013 Acta Phys. Sin. 62 200504 (in Chinese)
[32]Wang X, Chen Y and Dong Z Z 2014 Chin. Phys. B 23 010201
[33]Li X, Fan H L and Fan X F 2014 Chin. Phys. B 23 020201
[34]Chen J C, Li B and Chen Y 2013 Chin. Phys. B 22 110306
[35]Dai C and Zhang J 2006 Chaos, Solitons and Fractals 27 1042
[36]Slobodan Z, Annamalai M, Slobodan Z and Louis K 2014 Chin. Phys. B 23 020504
[37]Ma Z Y, Hu Y H and Lan J C 2008 Chaos, Solitons and Fractals 36 303
[38]He J H and Wu X H 2006 Chaos, Solitons and Fractals 30 700
[39]Zhu S D 2008 Phys. Lett. A 372 654
[40]Tang B, He Y, Wei L and Wang S 2011 Phys. Lett. A 375 3355
[41]Akbar M A, Ali N H M and Mohyud-Din S T 2013 Springer Plus 2 327
[42]Shakeel M and Mohyud-Din S T 2013 Int. J. Mod. Math. Sci. 6 160
[43]Alam M N, Akbar M A and Mohyud-Din S T 2014 Alexandria Engineering Journal (Elsevier) 53 233
[44]Bekir A and Güner Ö 2013 Chin. Phys. B 22 110202
[45]Alam M N, Akbar M A and Mohyud-Din S T 2014 Chin. Phys. B 23 020203
[46]Remoissenet M 1999 Waves Called Solitons, 3rd edn. (Berlin: Springer-Verlag)
[47]Mohyud-Din S T, Yildirim A and Sariaydin S 2011 Int. J. Numer. Methods Heat Fluid Flow 21 272
[48]Mohyud-Din S T, Yildirim A and Sariaydin S 2011 Int. J. Numer. Methods Heat Fluid Flow 21 822
[49]Kivshar Y S 1993 IEEE J. Quantum Electron. 29 250
[50]Weiner A M 1992 Optical Solitons: Theory and Experiment (Cambridge: Cambridge University, Press)
[51]Zhang X F, Yang Q, Zhang J F, Chen X Z and Liu W M 2008 Phys. Rev. A 77 023613
[52]Luther-Davies B and Yang X P 1992 Opt. Lett. 17 1755
[53]Swartzlander G A 1992 Opt. Lett. 17 493
[54]Luther-Davies B and Yang X P 1992 Opt. Lett. 17 496
[55]Krökel D, Halas N J, Giuliani G and Grischkowsky D 1988 Phys. Rev. Lett. 60 29
[56]Kivshar Y S, Haelterman M, Emplit P and Hamaide J P 1994 Opt. Lett. 19 19
[1] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[2] Head-on collision between two solitary waves in a one-dimensional bead chain
Fu-Gang Wang(王扶刚), Yang-Yang Yang(杨阳阳), Juan-Fang Han(韩娟芳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(4): 044501.
[3] Nucleus-acoustic solitary waves in self-gravitating degenerate quantum plasmas
D M S Zaman, M Amina, P R Dip, A A Mamun. Chin. Phys. B, 2018, 27(4): 040402.
[4] Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays
Li-Yuan Ma(马立媛), Jia-Liang Ji(季佳梁), Zong-Wei Xu(徐宗玮), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2018, 27(3): 030201.
[5] Simulations of solitary waves of RLW equation by exponential B-spline Galerkin method
Melis Zorsahin Gorgulu, Idris Dag, Dursun Irk. Chin. Phys. B, 2017, 26(8): 080202.
[6] Quasi-periodic solutions and asymptotic properties for the nonlocal Boussinesq equation
Zhen Wang(王振), Yupeng Qin(秦玉鹏), Li Zou(邹丽). Chin. Phys. B, 2017, 26(5): 050504.
[7] Soliton excitation in the pass band of the transmission line based on modulation
Guoying Zhao(赵帼英), Feng Tao(陶锋), Weizhong Chen(陈伟中). Chin. Phys. B, 2016, 25(4): 044101.
[8] (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect
Jin-Yuan Li(李近元), Nian-Qiao Fang(方念乔), Ji Zhang(张吉), Yu-Long Xue(薛玉龙), Xue-Mu Wang(王雪木), Xiao-Bo Yuan(袁晓博). Chin. Phys. B, 2016, 25(4): 040202.
[9] A new model for algebraic Rossby solitary waves in rotation fluid and its solution
Chen Yao-Deng (陈耀登), Yang Hong-Wei (杨红卫), Gao Yu-Fang (高玉芳), Yin Bao-Shu (尹宝树), Feng Xing-Ru (冯兴如). Chin. Phys. B, 2015, 24(9): 090205.
[10] Exponential B-spline collocation method for numerical solution of the generalized regularized long wave equation
Reza Mohammadi. Chin. Phys. B, 2015, 24(5): 050206.
[11] Complex dynamical behaviors of compact solitary waves in the perturbed mKdV equation
Yin Jiu-Li (殷久利), Xing Qian-Qian (邢倩倩), Tian Li-Xin (田立新). Chin. Phys. B, 2014, 23(8): 080201.
[12] New exact solutions of (3+1)-dimensional Jimbo-Miwa system
Chen Yuan-Ming (陈元明), Ma Song-Hua (马松华), Ma Zheng-Yi (马正义). Chin. Phys. B, 2013, 22(5): 050510.
[13] The extended cubic B-spline algorithm for a modified regularized long wave equation
İ. Dağ, D. Irk, M. Sarı. Chin. Phys. B, 2013, 22(4): 040207.
[14] A monolithic distributed phase shifter based on right-handed nonlinear transmission lines at 30 GHz
Huang Jie (黄杰), Zhao Qian (赵倩), Yang Hao (杨浩), Dong Jun-Rong (董军荣), Zhang Hai-Ying (张海英). Chin. Phys. B, 2013, 22(12): 127307.
[15] A GaAs planar Schottky varactor diode for left-handed nonlinear transmission line applications
Dong Jun-Rong(董军荣), Yang Hao(杨浩), Tian Chao(田超), Huang Jie(黄杰), and Zhang Hai-Ying(张海英) . Chin. Phys. B, 2012, 21(6): 067303.
No Suggested Reading articles found!