CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Multiferroicity in B-site ordered double perovskite Y2MnCrO6 |
Fang Yong (房勇), Yan Shi-Ming (颜士明), Qiao Wen (乔文), Wang Wei (王伟), Wang Dun-Hui (王敦辉), Du You-Wei (都有为) |
National Laboratory of Solid State Microstructures and Key Laboratory of Nanomaterials of Jiangsu Province, Nanjing University, Nanjing 210093, China |
|
|
Abstract Double perovskite manganite Y2MnCrO6 ceramic is synthesized and its multiferroic properties are investigated. Novel multiferroic properties are displayed with respect to other multiferroics, such as high ferroelectric phase transition temperature, and the coexistence of ferrimagnetism and ferroelectricity. Moreover, the ferroelectric polarization of Y2MnCrO6 below the magnetic phase temperature can be effectively tuned by an external magnetic field, showing a remarkable magnetoelectric effect. These results open an effective avenue to explore magnetic multiferroics with spontaneous magnetization and ferroelectricity, as well as a high ferroelectric transition temperature.
|
Received: 18 May 2014
Revised: 02 July 2014
Accepted manuscript online:
|
PACS:
|
75.47.Lx
|
(Magnetic oxides)
|
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
75.85.+t
|
(Magnetoelectric effects, multiferroics)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2009CB929501), the National High Technology Research and Development Program of China (Grant No. 2014AA032904), and the National Natural Science Foundation of China (Grant Nos. 11174130 and U1232210). |
Corresponding Authors:
Wang Dun-Hui
E-mail: wangdh@nju.edu.cn
|
Cite this article:
Fang Yong (房勇), Yan Shi-Ming (颜士明), Qiao Wen (乔文), Wang Wei (王伟), Wang Dun-Hui (王敦辉), Du You-Wei (都有为) Multiferroicity in B-site ordered double perovskite Y2MnCrO6 2014 Chin. Phys. B 23 117501
|
[1] |
Scott J F 2007 Science 315 954
|
[2] |
Spaldin N A and Fiebig M 2005 Science 309 391
|
[3] |
Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
|
[4] |
Béa H, Gajek M, Bibes M and Barthélémy A 2008 J. Phys.: Condens. Matter 20 434221
|
[5] |
Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature 426 55
|
[6] |
Prokhnenko O, Feyerherm R, Dudzik E, Landsgesell S, Aliouane N, Chapon L C and Argyriou D N 2007 Phys. Rev. Lett. 98 057206
|
[7] |
Kimura K, Nakamura H, Kimura S, Hagiwara M and Kimura T 2009 Phys. Rev. Lett. 103 107201
|
[8] |
Lee J H, Jeong Y K, Park J H, Oak M A, Jang H M, Son J Y and Scott J F 2011 Phys. Rev. Lett. 107 117201
|
[9] |
White J S, Honda T, Kimura K, Kimura T, Niedermayer C, Zaharko O, Poole B, Roessli A and Kenzelmann M 2012 Phys. Rev. Lett. 108 077204
|
[10] |
Murakawa H, Onose Y, Miyahara S, Furukawa N and Tokura Y 2010 Phys. Rev. Lett. 105 137202
|
[11] |
Hwang J, Choi E S, Ye F, Dela Cruz C R, Xin Y, Zhou H D and Schlottmann P 2012 Phys. Rev. Lett. 109 257205
|
[12] |
Tokunaga Y, Kaneko Y, Okuyama D, Ishiwata S, Arima T, Wakimoto S, Kakurai K, Taguchi Y and Tokura Y 2010 Phys. Rev. Lett. 105 257201
|
[13] |
Katsura H, Nagaosa N and Balatsky A V 2005 Phys. Rev. Lett. 95 057205
|
[14] |
Mostovoy M 2006 Phys. Rev. Lett. 96 067601
|
[15] |
Sergienko I A and Dagotto E 2006 Phys. Rev. B 73 094434
|
[16] |
Ishiwata S, Kaneko Y, Tokunaga Y, Taguchi Y, Arima T H and TokuraY 2010 Phys. Rev. B 81 100411
|
[17] |
Tokunaga Y, Iguchi S, Arima T and Tokura Y 2008 Phys. Rev. Lett. 101 097205
|
[18] |
Choi Y J, Yi H T, Lee S, Huang Q, Kiryukhin V and Cheong S W 2008 Phys. Rev. Lett. 100 047601
|
[19] |
Tokunaga Y, Furukawa N, Sakai H, Taguchi Y, Arima T H and Tokura Y 2009 Nat. Mater. 8 558
|
[20] |
Song Y Q, Zhou W P, Fang Y, Yang Y T, Wang L Y, Wang D H and Du Y W 2014 Chin. Phys. B 23 077505
|
[21] |
Lawes G, Harris A B, Kimura T, Rogado N, Cava R J, Aharony A, Entin-Wohlman O, Yildirim T, Kenzelmann M, Broholm C and Ramirez A P 2005 Phys. Rev. Lett. 95 087205
|
[22] |
Yamasaki Y, Miyasaka S, Kaneko Y, He J P, Arima T and Tokura Y 2006 Phys. Rev. Lett. 96 207204
|
[23] |
Arkenbout A H, Palstra T T M, Siegrist T and Kimura T 2006 Phys. Rev. B 74 184431
|
[24] |
Terada N, Khalyavin D D, Manuel P, Tsujimoto Y, Knight K, Radaelli P G, Suzuki H S and Kitazawa H 2012 Phys. Rev. Lett. 109 097203
|
[25] |
Kumar S, Giovannetti G, van den Brink J and Picozzi S 2010 Phys. Rev. B 82 134429
|
[26] |
Yáñez-Vilar S, Mun E D, Zapf V S, Ueland B G, Gardner J S, Thompson J D, Singleton J, Sanchez-Andujar M, Mira J, Bishop N, Senaris-Rodriguez M A and Batista C D 2011 Phys. Rev. B 84 134427
|
[27] |
Sharma G, Saha J, Kaushik S D, Siruguri V and Patnaik S 2013 Appl. Phys. Lett. 103 012903
|
[28] |
Yang L, Duanmu Q Y, Hao L, Zhang Z F, Wang X P, Wei Y Y and Zhu H 2013 J. Alloys Comp. 570 41
|
[29] |
Zhang G Q, Dong S, Yan Z B, Guo Y Y, Zhang Q F, Yunoki S, Dagotto E and Liu J M 2011 Phys. Rev. B 84 174413
|
[30] |
Dong X W, Dong S, Wang K F, Wan J G and Liu J M 2010 Appl. Phys. Lett. 96 242904
|
[31] |
Yu H W, Liu M F, Li X, Li L, Lin L, Yan Z B and Liu J M 2013 Phys. Rev. B 87 104404
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|