Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 094206    DOI: 10.1088/1674-1056/23/9/094206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Compression of the self-Q-switching in semiconductor disk lasers with single-layer graphene saturable absorbers

Yu Zhen-Hua (于振华), Tian Jin-Rong (田金荣), Song Yan-Rong (宋晏蓉)
Institute of Information Photonics Technology and College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
Abstract  We demonstrate the first use of single layer graphene for compressing self-Q-switching pulses in semiconductor disk lasers. The gain region of the semiconductor disk laser used InGaAs quantum wells with a central wavelength of 1030 nm. Due to self saturable absorption of the quantum wells, the disk laser emitted at the self-Q-switching state with a pulse width of 13 μs. By introducing the single layer graphene as a saturable absorber into the V-shaped laser cavity, the pulse width of the self-pulse was compressed to 2 μs with a lower pump power of 300 mW. As the pump power was increased, multiple pulses with the pulse width of 1.8 μs appeared. The compression factor was about 7.2.
Keywords:  semiconductor disk laser      graphene      compression  
Received:  26 March 2014      Revised:  28 April 2014      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  81.05.ue (Graphene)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB922404), the National Natural Science Foundation of China (Grant No. 61177047), and the Key Project of the National Natural Science Foundation of China (Grant No. 61235010).
Corresponding Authors:  Song Yan-Rong     E-mail:  yrsong@bjut.edu.cn

Cite this article: 

Yu Zhen-Hua (于振华), Tian Jin-Rong (田金荣), Song Yan-Rong (宋晏蓉) Compression of the self-Q-switching in semiconductor disk lasers with single-layer graphene saturable absorbers 2014 Chin. Phys. B 23 094206

[1] Wang Y C, Zhao Y P, Zhang M J, An Y and Wang J L 2007 Acta Phys. Sin. 56 6982 (in Chinese)
[2] Zhang P, Song Y R, Tian J R, Zhang X P and Zhang Z G 2009 J. Appl. Phys. 105 053103
[3] Chen C, Zhao L J, Qiu J F, Liu Y, Wang W and Lou C Y 2012 Chin. Phys. B 21 094208
[4] Zhao Z, Bouchoule S, Song J, Galopin E, Harmand J, Decobert J, Aubin G and Oudar J 2011 Opt. Lett. 36 4377
[5] Rantamaki A, Rautiainen J, Lyytikainen J, Sirbu A, Mereuta A, Kapon E and Okhotnikov O G 2012 Opt. Express 20 9046
[6] Keller U and Tropper A C 2006 Phys. Rep. 429 67
[7] Kuznetsov M, Hakimi F, Sprague R and Mooradian A 1997 IEEE Photonic Tech. L 9 1063
[8] Steegmuller U, Friepes K, Kuhnelt M, Pammer W, Maric J, Morgott S, Schwarz T and Singer F 2005 Glass Sci. Technol. 78 90
[9] Cerutti L, Garnache A, Ouvrard A, Garcia M and Genty F 2005 Phys. Status Solidi A 202 631
[10] Tierno A, Radwell N and Achemann T 2011 Phys. Rev. A 84 043828
[11] Wang Y G, Ming X Y, Fan Y X and Wang H T 2005 Appl. Opt. 44 4384
[12] Sakakibara Y, Aleksey, Rozhin G, Kataura H, Achiba Y and Tokumoto M 2005 Jpn. J. Appl. Phys. 44 1621
[13] Chen H R, Wang Y G, Tsai C Y, Lin K H, Chang T Y, Tang J and Hsieh W F 2011 Opt. Lett. 36 1284
[14] Tan W D, Su C Y, Knize R J, Xie G Q, Li L J and Tang D Y 2010 Appl. Phys. Lett. 96 031106
[15] Liu J, Wang Y G, Qu Z S, Zheng L H, Su L B and Xu J 2012 Laser Phys. Lett. 9 15
[16] Liu Z B, He X Y and Wang D N 2011 Opt. Lett. 36 3024
[17] Cheng K, Zhao S Z, Yang K J, Li G Q, Li D C, Zhang G, Zhao B and Wang Y G 2011 Laser Phys. Lett. 8 418
[18] Feng D J, Hang W Y, Jiang S Z, Ji W and Jia D F 2013 Acta Phys. Sin. 62 054202 (in Chinese)
[19] Wang Q, Teng H, Zou Y W, Zhang Z G, Li D H, Wang R, Gao C Q, Lin J J, Guo L W and Wei Z Y 2012 Opt. Lett. 37 395
[20] Gao C Q, Wang R, Zhu L N, Gao M W, Wang Q, Zhang Z G, Wei Z Y, Lin J J and Guo L W 2002 Opt. Lett. 37 632
[21] Wang Y G, Chen H R, Wen X M, Hsieh W F and Tang J 2011 Nanotechnology 22 455203
[22] Zhao C, Zhang H, Qi X, Chen Y, Wang Z, Wen S C and Tang D Y 2012 Appl. Phys. Lett. 101 211106
[23] Zhang H, Lu S B, Zheng J, Du J, Wen S C, Tang D Y and Loh K P 2014 Opt. Express 22 7249
[24] Bao Q L, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077
[25] Zhang H, Virally S, Bao Q L, Ping L K, Massar S, Godbout N and Kockaert P 2012 Opt. Lett. 37 1856
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[7] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[8] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[9] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] Nanobubbles produced by hydraulic air compression technique
Xiaodong Yang(杨晓东), Qingfeng Yang(杨庆峰), Limin Zhou(周利民),Lijuan Zhang(张立娟), and Jun Hu(胡钧). Chin. Phys. B, 2022, 31(5): 054702.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!