Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 094205    DOI: 10.1088/1674-1056/23/9/094205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Influence of a phonon bath in a quantum dot cavity QED system:Dependence of the shape

Wang Wei-Sheng (王伟胜), Zhang Ming-Liang (张明亮), Chen Zhi-De (陈芝得)
Department of Electronic Engineering, Jinan University, Guangzhou 510632, China
Abstract  We present a systematic analysis on the role of the quantum dot (QD) shape in the influence of the phonon bath on the dynamics of a QD cavity QED system. The spectral functions of the phonon bath in three representative QD shapes: spherical, ellipsoidal, and disk, are calculated from the carrier wave functions subjected to the confinement potential provided by the corresponding shape. The obtained spectral functions are used to calculate three main effects brought by the phonon bath, i.e., the coupling renormalization, the off-resonance assisted feeding rate and the pure dephasing rate. It is found that the spectral function of a disk QD has the widest distribution, hence the phonon bath in a disk QD can lead to the smallest renormalization factor, the largest dephasing rate in the short time domains(≤ 2 ps), and the off-resonance assisted feeding can support the widest detuning. Except for the pure dephasing rate in the long time domains, all the influences brought by the phonon bath show serious shape dependence.
Keywords:  quantum dot      shape dependence      phonon bath      spectral function  
Received:  15 January 2014      Revised:  23 February 2014      Accepted manuscript online: 
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  78.67.Hc (Quantum dots)  
  63.20.kd (Phonon-electron interactions)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974072).
Corresponding Authors:  Chen Zhi-De     E-mail:  tzhidech@jnu.edu.cn

Cite this article: 

Wang Wei-Sheng (王伟胜), Zhang Ming-Liang (张明亮), Chen Zhi-De (陈芝得) Influence of a phonon bath in a quantum dot cavity QED system:Dependence of the shape 2014 Chin. Phys. B 23 094205

[1] Williamson A J 2002 Quantum Dots (Singapore: World Scientific) p. 15
[2] Petroff P M 2003 Single Quantum Dots (Berlin: Springer-Verlag) p. 1
[3] Fox M 2006 Quantum Optics: An Introduction (Oxford: Oxford University Press) p. 333
[4] Li X K, Jin P, Liang D C, Wu J and Wang Z G 2013 Chin. Phys. B 22 048102
[5] Niu Z C, Sun B Q, Dou X M, Xiong Y H, Wang H L, Ni H Q, Li S S and Xia J B 2010 Physics 39 737 (in Chinese)
[6] Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E and Imamoğlu A 2000 Science 290 2282
[7] Stevenson R M, Thompson R M, Shields A J, Farrer I, Kardynal B E, Ritchie D A and Pepper M 2002 Phys. Rev. B 66 081302
[8] Chen W, Xue Z Y, Wang Z D and Shen R 2014 Chin. Phys. B 23 030309
[9] Troiani F, Molinari E and Hohenester U 2003 Phys. Rev. Lett. 90 206802
[10] Ramsay A J, Gopal A V, Gauger E M, Nazir A, Lovett B W, Fox A M and Skolnick M S 2010 Phys. Rev. Lett. 104 017402
[11] Ramsay A J, Godden T M, Boyle S J, Gauger E M, Nazir A, Lovett B W, Fox A M and Skolnick M S 2010 Phys. Rev. Lett. 105 177402
[12] Ramsay A J, Godden T M, Boyle S J, Gauger E M, Nazir A, Lovett B W, Gopal A V, Fox A M and Skolnick M S 2011 J. Appl. Phys. 109 102415
[13] McCutcheon D P S and Nazir A 2010 New J. Phys. 12 113042
[14] Hennessy K, Badolato A, Winger M, Gerace D, Atatüre M, Gulde S, Fält S, Hu E L and Imamoğlu A 2007 Nature 445 896
[15] Nysteen A, Kaer P and Mork J 2013 Phys. Rev. Lett. 110 087401
[16] Kaer P, Nielsen T R, Lodahl P, Jauho A P and Mork J 2012 Phys. Rev. B 86 085302
[17] Hughes S, Yao P, Milde F, Knorr A, Dalacu D, Mnaymneh K, Sazonova V, Poole P J, Aers G C, Lapointe J, Cheriton R and Williams R L 2011 Phys. Rev. B 83 165313
[18] Roy C and Hughes S 2011 Phys. Rev. X 1 021009
[19] Xue J, Zhu K D and Zheng H 2008 J. Phys.: Condens. Matter 20 325209
[20] Hohenester U 2010 Phys. Rev. B 81 155303
[21] Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Anupam G and Zwerger W 1987 Rev. Mod. Phys. 59 1
[22] Krummheuer B, Axt V M and Kuhn T 2002 Phys. Rev. B 65 195313
[23] Takagahara T 1999 Phys. Rev. B 60 2638
[24] Calarco T, Datta A, Fedichev P, Pazy E and Zoller P 2003 Phys. Rev. A 68 012310
[25] Stock E, Dachner M R, Warming T, Schliwa A, Lochmann A, Hoffmann A, Toropov A I, Bakarov A K, Derebezov I A, Richter M, Haisler V A, Knorr A and Bimberg D 2011 Phys. Rev. B 83 041304
[26] Mahan G D 2000 Many Particle Physics (3th edn.) (New York: Plenum Press) p. 461
[27] Dalacu D, Mnaymneh K, Sazonova V, Poole P J, Aers G C, Lapointe J, Cheriton R, Thorpe A J S and Williams R 2010 Phys. Rev. B 82 033301
[28] Hohenester U, Laucht A, Kaniber M, Hauke N, Neumann A, Mohtashami A, Seliger M, Bichler M and Finley J J 2009 Phys. Rev. B 80 201311
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[11] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!