Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 030502    DOI: 10.1088/1674-1056/ac891a
GENERAL Prev   Next  

Modulational instability of a resonantly polariton condensate in discrete lattices

Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐)
Department of Physics, Shaanxi University of Science and Technology, Xi'an 710021, China
Abstract  We study modulational instability of a resonantly polariton condensate in a discrete lattice. Employing a discrete gain-saturation model, we derive the dispersion relation for the modulational instability by means of the linear-stability analysis. Effects of the pumping strength, the nonlinearity, the strength of the detuning, and the coupling strength on the modulation instability are investigated. It is found that the interplay between these parameters will dramatically change the modulational instability condition. We believe that the predicted results in this work can be useful for future possible experiment of exciton-polariton condensate in lattices.
Keywords:  modulational instability      polariton condensate      discrete lattices  
Received:  18 May 2022      Revised:  04 July 2022      Accepted manuscript online:  12 August 2022
PACS:  05.45.Yv (Solitons)  
  67.85.Hj (Bose-Einstein condensates in optical potentials)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: This work was partly supported by the National Natural Science Foundation of China (Grant No. 11805116), and the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2023-JC-YB-037).
Corresponding Authors:  Wei Qi     E-mail:

Cite this article: 

Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐) Modulational instability of a resonantly polariton condensate in discrete lattices 2023 Chin. Phys. B 32 030502

[1] Kasprzak J, Richard M, Kundermann S and Marchetti F M 2006 Nature 443 409
[2] Carusotto I and Ciuti C 2013 Rev. Mod. Phys. 85 299
[3] Kéna-Cohen S and Forrest S R 2010 Nat. Photon. 4 371
[4] Manni F, Lagoudakis K G, Pietka B, Fontanesi L, Wouters M, Savona V, Andre R and Deveaud-Plédran B 2011 Phys. Rev. Lett. 106 176401
[5] Matuszewski M, Rosberg C R, Neshev D N, Sukhorukov A A, Mitchell A, Trippenbach M, Austin M W, Królikowski W and Kivshar Y S 2006 Opt. Express 14 254
[6] Malpuech G, Solnyshkov D D, Ouerdane H, Glazov M M and Shelykh I 2007 Phys. Rev. Lett. 98 206402
[7] Wertz E, Ferrier L, Solnyshkov D D, Johne R, Sanvitto D, Lemaitre A, Sagnes I, Grousson R, Kavokin A V, Senellart P, Malpuech G and Bloch J 2010 Nat. Phys. 6 860
[8] Galbiati M, Ferrier L, Solnyshkov D D, Tanese D, Wertz E, Amo A, Abbarchi M, Senellart P, Sagnes I, Lemaitre A, Galopin E, Malpuech G and Bloch J 2012 Phys. Rev. Lett. 108 126403
[9] Schneider C, Winkler K, Fraser M D, Kamp M, Yamamoto Y, Ostrovskaya E A and Höling S 2017 Rep. Prog. Phys. 80 016503
[10] Tanese D, Flayac H, Solnyshkov D, Amo A, Lemaitre A, Galopin E, Braive R, Senellart P, Sagnes I, Malpuech G and Bloch J 2013 Nat. Commun. 4 1749
[11] Cerda-Méndez E A, Krizhanovskii D N, Wouters M, Bradley R, Biermann K, Guda K, HeyR, Santos P V, Sarkar D and Skolnick M S 2010 Phys. Rev. Lett. 105 116402
[12] Stępnicki P and Matuszewski M 2013 Phys. Rev. A 88 033626
[13] Yulin A V, Chestnov I Y, Ma X, Schumacher S, Peschel U and Egorov O V 2016 Phys. Rev. B 94 054312
[14] Ganerjee R and Liew T C H 2020 New J. Phys. 22 103062
[15] Goblot V, Rauer B, Vicentini F, Boité A L, Galopin E, Lemaitre A, Gratiet L L, Harouri A, Sagnes I, Ravets S, Ciuti C, Amo A and Bloch J 2019 Phys. Rev. Lett. 123 113901
[16] Pieczarka M, Estrecho E, Ghosh S, Wurdack M, Steger M, Snoke D, West K, Pfeiffer L, Liew T C H, Truscott A and Ostrovskaya E 2021 Optica 8 1084
[17] Zhang W, Chen X, Kartashov Y, Skryabin D and Ye F 2019 Laser Photon. Rev. 13 19001987
[18] Li C, Ye F, Chen X and Kartashov Y V, Ferrando A Torner L and Skryabin D V 2018 Phys. Rev. B 97 081103
[19] Mandal S, Banerjee R, Ostrovskaya E A and Liew T C H 2020 Phys. Rev. Lett. 125 123902
[20] Banerjee R, Mandal S and Liew T C H 2020 Phys. Rev. Lett. 124 063901
[21] Nguyen J H V, Luo D and Hulet R G 2017 Science 356 422
[22] Duan L, Liu C, Zhao L C and Yang Z Y 2020 Acta Phys. Sin. 69 010501 (in Chinese)
[23] Wang L L and Liu W J 2020 Chin. Phys. B 29 100501
[24] Kartashov Y V and Skryabin D V 2016 Optica 3 001228
[25] Egorov O A and Lederer F 2013 Phys. Rev. B 87 115315
[26] Johnston A, Kalinin K P and Berloff N G 2021 Phys. Rev. B 103 L060507
[27] Xu X, Mandal S, Banerjee R, Ghosh S and Liew T C H 2021 Phys. Rev. B 103 235306
[28] Pieczarka M, Estrecho E, Boozarjmehr M, Bleu O, Steger M, West K, Pfeiffer L N, Snoke D W, Levisen J, Parish M M, Truscott A G and Ostrovskaya E A 2020 Nat. Commun. 11 429
[29] Takemura N, Trebaol S, Wouters M, Portella-Oberli M T and Deveaud B 2014 Nat. Phys. 10 500
[1] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[2] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[3] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[4] Gravity-capillary waves modulated by linear shear flow in arbitrary water depth
Shaofeng Li(李少峰), Jinbao Song(宋金宝), and Anzhou Cao(曹安州). Chin. Phys. B, 2020, 29(12): 124702.
[5] Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling
Jiayu Xie(谢家玉), Zhihao Deng(邓志豪), Xia Chang(昌霞), Bing Tang(唐炳). Chin. Phys. B, 2019, 28(7): 077501.
[6] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[7] A nonlinear Schrödinger equation for gravity waves slowly modulated by linear shear flow
Shaofeng Li(李少峰), Juan Chen(陈娟), Anzhou Cao(曹安州), Jinbao Song(宋金宝). Chin. Phys. B, 2019, 28(12): 124701.
[8] Modulational instability, quantum breathers and two-breathers in a frustrated ferromagnetic spin lattice under an external magnetic field
Wanhan Su(苏琬涵), Jiayu Xie(谢家玉), Tianle Wu(吴天乐), Bing Tang(唐炳). Chin. Phys. B, 2018, 27(9): 097501.
[9] Soliton excitations in a polariton condensate with defects
Abderahim Mahmoud Belounis, Salem Kessal. Chin. Phys. B, 2018, 27(1): 010307.
[10] Modeling of nonlinear envelope solitons in strongly coupled dusty plasmas: Instability and collision
S. K. El-Labany, E. F. El-Shamy, W. F. El-Taibany, N. A. Zedan. Chin. Phys. B, 2015, 24(3): 035201.
[11] Relativistic degenerate effects of electrons and positrons on modulational instability of quantum ion acoustic waves in dense plasmas with two polarity ions
Liu Tie-Lu (刘铁路), Wang Yun-Liang (王云良), Lu Yan-Zhen (路彦珍). Chin. Phys. B, 2015, 24(2): 025202.
[12] Discrete energy transport in collagen molecules
Alain Mvogo, Germain H. Ben-Bolie, Timoléon C. Kofané. Chin. Phys. B, 2014, 23(9): 098701.
[13] Dynamical behaviour of transverse plasmons in pair plasmas
Liu San-Qiu(刘三秋), Liu Yong(刘勇), and Li Xiao-Qing(李晓卿). Chin. Phys. B, 2011, 20(1): 015203.
[14] Modulational instability for a self-attractive two-component Bose--Einstein condensate
Li Sheng-Chang(栗生长) and Duan Wen-Shan(段文山). Chin. Phys. B, 2009, 18(10): 4177-4181.
[15] Modulational instability of incoherently coupled beams in azobenzene-containing polymer with photoisomerization nonlinearity
Zhang Bing-Zhi(张冰志), Cui Hu(崔虎), and She Wei-Long (佘卫龙). Chin. Phys. B, 2009, 18(1): 209-214.
No Suggested Reading articles found!