SPECIAL TOPI—International Conference on Nanoscience & Technology, China 2013 |
Prev
Next
|
|
|
Growth of threaded AlN whiskers by a physical vapor transport method |
Wang Jun (王军), Zhao Meng (赵萌), Zuo Si-Bin (左思斌), Wang Wen-Jun (王文军) |
Research & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Threaded aluminum nitride (AlN) whiskers are grown by a physical vapor transport method in a radio-frequency induction heating furnace. The resultant whiskers are characterized by X-ray diffraction, Raman scattering, scanning electron microscopy, transmission electron microscopy and photoluminescence. The analysis shows that the whiskers are single-crystalline, wurtzite AlN. The threaded AlN whiskers are 0.5 μm~ 100 μm in diameter and several millimeters in length in the fiber direction, and have lots of tiny sawteeth on the surface. The morphology of this threaded AlN whisker is beneficial for bonding when the whisker is used in composite. The growth of the whiskers is dominated by the vapor-solid (VS) mechanism, and the particular morphology might result from an oscillating condition produced in the radio-frequency induction heating furnace.
|
Received: 04 September 2013
Revised: 17 December 2013
Accepted manuscript online:
|
PACS:
|
81.05.Ea
|
(III-V semiconductors)
|
|
81.10.Bk
|
(Growth from vapor)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB932901), the National Natural Science Foundation of China (Grant Nos. 51210105026 and 51172270), and the Funds from the Chinese Academy of Sciences. |
Corresponding Authors:
Wang Wen-Jun
E-mail: wjwang@aphy.iphy.ac.cn
|
Cite this article:
Wang Jun (王军), Zhao Meng (赵萌), Zuo Si-Bin (左思斌), Wang Wen-Jun (王文军) Growth of threaded AlN whiskers by a physical vapor transport method 2014 Chin. Phys. B 23 088103
|
[1] |
Levinshtein M E, Ramyantsev S L and Shur M S 2001 Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe (New York: Wiley) p. 31
|
[2] |
Miskys C R, Garrido J A, Nebel C E, Hermann M, Ambacher O, Eickhoff M and Stutzmann M 2003 Appl. Phys. Lett. 82 290
|
[3] |
Dai Z R, Pan Z W and Wang Z L 2003 Adv. Funct. Mater. 13 9
|
[4] |
Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayer B, Gates B, Yin Y D, Kim F and Yan H Q 2003 Adv. Mater. 15 353
|
[5] |
Alivisatos A P 1996 Science 271 933
|
[6] |
Law M, Sirbuly D J, Johnson J C, Goldberger J, Saykally R J and Yang P D 2004 Science 305 1269
|
[7] |
Jin Z Q, Ding Y and Wang Z L 2005 J. Appl. Phys. 97 074309
|
[8] |
Huang L S, Pu L, Shi Y, Zhang R, Gu B X, Du Y W and Zheng Y D 2005 Opt. Express 13 5263
|
[9] |
Caceres P G and Schmid H K 1994 J. Am. Ceram. Soc. 77 977
|
[10] |
Miao W G, Wu Y and Zhou H P 1997 J. Mater. Sci. 32 1969
|
[11] |
Taylor K M and Lenie C 1960 J. Electrochem. Soc. 107 308
|
[12] |
Duan J H, Yang S G, Liu H W, Gong J F, Huang H B, Zhao X N, Zhang R and Du Y W 2005 J. Phys. Chem. B 109 3701
|
[13] |
Wu Q, Hu Z, Wang X Z, Lu Y N, Chen X, Xu H and Chen Y 2003 J. Am. Chem. Soc. 125 10176
|
[14] |
Wu Q, Hu Z, Wang X Z and Chen Y 2003 J. Phys. Chem. B 107 9726
|
[15] |
Iton H, Morikawa H and Sugiyama K 1989 J. Cryst. Growth 94 387
|
[16] |
Yang J, Liu T W, Hsu C W, Chen L C, Chen K H and Chen C C 2006 Nanotechnol. 17 S321
|
[17] |
Lan Y C, Chen X L, Cao Y G, Xu Y P, Xun L D, Xu T and Liang J K 1999 J. Cryst. Growth 207 247
|
[18] |
Cao Y G, Chen X L, Lan Y C, Li J Y, Zhang Y, Yang Z and Liang J K 2001 Appl. Phys. A 72 125
|
[19] |
Epelbaum B M, Seitz C, Magerl A, Bickermann M and Winnacker A 2004 J. Cryst. Growth 265 577
|
[20] |
Yakimova R, Kakanakova-Georgieva A, Yazdi G R, Gueorguiev G K and Syväjärvi M 2005 J. Cryst. Growth 281 81
|
[21] |
Li J, Hu X B, Jiang S Z, Ning L, Wang Y M, Chen X F, Xu X G, Wang J Y and Jiang M H 2006 J. Cryst. Growth 293 93
|
[22] |
Yazdi G R, Syväjärvi M and Yakimova R 2007 J. Cryst. Growth 300 130
|
[23] |
Bao H Q, Chen X L, Li H, Wang G, Song B and Wang W J 2009 Appl. Phys. A 94 173
|
[24] |
Jiang L B, Zuo S B, Wang W J, Li H, Jin S F, Wang S C and Chen X L 2011 J. Cryst. Growth 318 1089
|
[25] |
Shen L H, Li X F, Cui Q L, Liu B B and Cui T 2010 Appl. Phys. A 99 111
|
[26] |
Vanheusden K, Warren W L, Seager C H, Tallant D R, Voigt J A and Gnade B E 1996 J. Appl. Phys. 79 7983
|
[27] |
Chen H T, Wu X L, Xiong X, Zhang W C, Xu L L, Zhu J and Chu P K 2008 J. Phys. D: Appl. Phys. 41 025101
|
[28] |
Liu C, Hu Z, Wu Q, Wang X Z, Chen Y, Sang H, Zhu J M, Deng S Z and Xu N S 2005 J. Am. Chem. Soc. 127 1318
|
[29] |
Shen L H, Cheng T M, Wu L J, Li X F and Cui Q L 2008 J. Alloys Compd. 465 562
|
[30] |
Sheppard L M 1990 Am. Ceram. Soc. Bull. 69 1801
|
[31] |
He J H, Yang R, Chueh H L, Chou L J, Chen L J and Wang Z L 2006 Adv. Mater. 18 650
|
[32] |
Cheng S, Lü H M and Cui J Y 2012 Acta Phys. Sin. 61 036203 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|