Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 107301    DOI: 10.1088/1674-1056/26/10/107301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Simulation study of InAlN/GaN high-electron mobility transistor with AlInN back barrier

Tie-Cheng Han(韩铁成), Hong-Dong Zhao(赵红东), Lei Yang(杨磊), Yang Wang(王杨)
School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China
Abstract  

In this work, we use a 3-nm-thick Al0.64In0.36N back-barrier layer in In0.17Al0.83N/GaN high-electron mobility transistor (HEMT) to enhance electron confinement. Based on two-dimensional device simulations, the influences of Al0.64In0.36N back-barrier on the direct-current (DC) and radio-frequency (RF) characteristics of InAlN/GaN HEMT are investigated, theoretically. It is shown that an effective conduction band discontinuity of approximately 0.5 eV is created by the 3-nm-thick Al0.64In0.36N back-barrier and no parasitic electron channel is formed. Comparing with the conventional InAlN/GaN HEMT, the electron confinement of the back-barrier HEMT is significantly improved, which allows a good immunity to short-channel effect (SCE) for gate length decreasing down to 60 nm (9-nm top barrier). For a 70-nm gate length, the peak current gain cut-off frequency (fT) and power gain cut-off frequency (fmax) of the back-barrier HEMT are 172 GHz and 217 GHz, respectively, which are higher than those of the conventional HEMT with the same gate length.

Keywords:  InAlN/GaN HEMT      back barrier      electron confinement      short-channel effect (SCE)  
Received:  19 April 2017      Revised:  24 June 2017      Accepted manuscript online: 
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: 

Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. F2013202256).

Corresponding Authors:  Hong-Dong Zhao     E-mail:  zhaohd@hebut.edu.cn

Cite this article: 

Tie-Cheng Han(韩铁成), Hong-Dong Zhao(赵红东), Lei Yang(杨磊), Yang Wang(王杨) Simulation study of InAlN/GaN high-electron mobility transistor with AlInN back barrier 2017 Chin. Phys. B 26 107301

[1] Sun H, Alt A R, Benedickter H, Feltin E, Carlin J F, Gonschorek M, Grandjean N and Bolognesi R C 2010 IEEE Electron Dev. Lett. 31 293
[2] Wang R, Saunier P, Xing X, Lian C, Gao X, Gou S, Snider G, Fay P, Jena D and Xing H 2010 IEEE Electron Dev. Lett. 31 1383
[3] Yue Y, Hu Z, Guo J, Sensale-Rodriguez B, Li G, Wang R, Faria F, Fang T, Song B, Gao X, Guo S, Kosel T, Snider G, Fay P, Jena D and Xing H 2012 IEEE Electron Dev. Lett. 33 988
[4] Zhang P, Zhao S L, Xue J S, Zhu J J, Ma X H, Zhang J C and Hao Y 2015 Chin. Phys. B 24 127306
[5] Zhou H, Lou X, Conrad N J, Si M, Wu H, Alghamdi, Guo S, Gordon R G and Ye P D 2016 IEEE Electron Dev. Lett. 37 556
[6] Han T T, Dun S B, Lv Y J, Gu G D, Song X B, Wang Y G, Xu P and Feng Z H 2016 J. Semicond. 37 024007
[7] Uren M J, Nash K J, Balmer R S, Martin T, Morvan E, Caillas N, Delage S L, Ducatteau D, Grimbert B and De Jaeger J C 2006 IEEE Trans. Electron Dev. 53 395
[8] Zervos M, Kostopoulos A, Constantinidis G, Kayambaki M and Georgakilas A 2002 J. Appl. Phys. 91 4387
[9] Bahat-Treidel E, Hilt O, Brunner F, Würfl J and Tränkle G 2008 IEEE Trans. Electron Dev. 55 3354
[10] Lee D S, Gao X, Guo S and Palacios T 2011 IEEE Electron Dev. Lett. 32 617
[11] Meng F, Zhang J, Zhou H, Ma J, Xue J, Dang L, Zhang L, Lu M, Ai S, Li X and Hao Y 2012 J. Appl. Phys. 112 023707
[12] Peng E, Wang X, Xiao H, Wang C, Yin H, Chen H, Feng C, Jiang L, Hou X and Wang Z 2013 J. Cryst. Growth 383 25
[13] Wang C, Zhao M D, Pei J Q, He Y L, Li X D, Zheng X F, Mao Wei, Ma X H, Zhang J C and Hao Y 2016 Acta Phys. Sin. 65 038501(in Chinese)
[14] Ho S Y, Lee C H, Tzou A J, Kou H C, Wu Y R and Huang J J 2017 IEEE Trans. Electron Dev. 64 1505
[15] Liu J, Zhou Y, Lau K M and Chen K J 2006 IEEE Electron Dev. Lett. 27 10
[16] Palacios T, Chakraborty A, Heikman S, Keller S, DenBaars S P and Mishra U K 2006 IEEE Electron Dev. Lett. 27 13
[17] Lee D S, Gao X, Guo S, Kopp D, Fay P and Palacios T 2011 IEEE Electron Dev. Lett. 32 1525
[18] Kamath A, Patil T, Adari R, Bhattacharya I, Ganguly S, Aldhaheri R W, Hussain M A and Saha D 2012 IEEE Electron Dev. Lett. 33 1690
[19] He X G, Zhao D G, Jiang D S, Zhu J J, Chen P, Liu Z S, Le L C, Yang J, Li X J, Liu J P, Zhang L Q and Yang H 2016 J. Alloys Compd. 662 16
[20] SILVACO Int., 2016 ATLAS User's Manual, Device Simulation Software (Santa Clara:CA) p. 2
[21] Ambacher O, Majewski J, Miskys C, Link A, Hermann M, Eickhoff M, Stutzmann M, Bernardini F, Fiorentini V, Tilak V, Schaff B and Eastman L F 2002 J. Phys.:Condens. Matter 14 3399
[22] Pelá R R, Caetano C, Ferreira L G, Furthmüller J and Teles L K 2011 Appl. Phys. Lett. 98 151907
[23] Gonschorek M, Carlin J F, Feltin E, Py, M A, Grandjean N, Darakchieva V, Monemar B, Lorenz M and Ramm G 2008 J. Appl. Phys. 103 093714
[24] He X G, Zhao D G and Jiang D S 2015 Chin. Phys. B 24 067301
[25] Simin G, Hu X, Tarakji A, Zhang J, Koudymov A, Saygi S, Yang J, Khan A, Shur M S and Gsaka R 2001 Jpn. J. Appl. Phys. 40 L1142
[26] Jessen G H, Fitch R C, Gillespie J K, Via G, Crespo A, Langley D, Denninghoff D J, Trejo M and Heller E R 2007 IEEE Trans. Electron Dev. 54 2589
[1] Short-gate AlGaN/GaN high-electron mobility transistors with BGaN buffer
Tie-Cheng Han(韩铁成), Hong-Dong Zhao(赵红东), Xiao-Can Peng(彭晓灿). Chin. Phys. B, 2019, 28(4): 047302.
[2] High-power SiC MESFET using dual p-buffer layer for S-band power amplifier
Deng Xiao-Chuan (邓小川), Sun He (孙鹤), Rao Cheng-Yuan (饶成元), Zhang Bo (张波). Chin. Phys. B, 2013, 22(1): 017302.
No Suggested Reading articles found!