CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Simulation study of InAlN/GaN high-electron mobility transistor with AlInN back barrier |
Tie-Cheng Han(韩铁成), Hong-Dong Zhao(赵红东), Lei Yang(杨磊), Yang Wang(王杨) |
School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China |
|
|
Abstract In this work, we use a 3-nm-thick Al0.64In0.36N back-barrier layer in In0.17Al0.83N/GaN high-electron mobility transistor (HEMT) to enhance electron confinement. Based on two-dimensional device simulations, the influences of Al0.64In0.36N back-barrier on the direct-current (DC) and radio-frequency (RF) characteristics of InAlN/GaN HEMT are investigated, theoretically. It is shown that an effective conduction band discontinuity of approximately 0.5 eV is created by the 3-nm-thick Al0.64In0.36N back-barrier and no parasitic electron channel is formed. Comparing with the conventional InAlN/GaN HEMT, the electron confinement of the back-barrier HEMT is significantly improved, which allows a good immunity to short-channel effect (SCE) for gate length decreasing down to 60 nm (9-nm top barrier). For a 70-nm gate length, the peak current gain cut-off frequency (fT) and power gain cut-off frequency (fmax) of the back-barrier HEMT are 172 GHz and 217 GHz, respectively, which are higher than those of the conventional HEMT with the same gate length.
|
Received: 19 April 2017
Revised: 24 June 2017
Accepted manuscript online:
|
PACS:
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
85.30.Tv
|
(Field effect devices)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
Fund: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. F2013202256). |
Corresponding Authors:
Hong-Dong Zhao
E-mail: zhaohd@hebut.edu.cn
|
Cite this article:
Tie-Cheng Han(韩铁成), Hong-Dong Zhao(赵红东), Lei Yang(杨磊), Yang Wang(王杨) Simulation study of InAlN/GaN high-electron mobility transistor with AlInN back barrier 2017 Chin. Phys. B 26 107301
|
[1] |
Sun H, Alt A R, Benedickter H, Feltin E, Carlin J F, Gonschorek M, Grandjean N and Bolognesi R C 2010 IEEE Electron Dev. Lett. 31 293
|
[2] |
Wang R, Saunier P, Xing X, Lian C, Gao X, Gou S, Snider G, Fay P, Jena D and Xing H 2010 IEEE Electron Dev. Lett. 31 1383
|
[3] |
Yue Y, Hu Z, Guo J, Sensale-Rodriguez B, Li G, Wang R, Faria F, Fang T, Song B, Gao X, Guo S, Kosel T, Snider G, Fay P, Jena D and Xing H 2012 IEEE Electron Dev. Lett. 33 988
|
[4] |
Zhang P, Zhao S L, Xue J S, Zhu J J, Ma X H, Zhang J C and Hao Y 2015 Chin. Phys. B 24 127306
|
[5] |
Zhou H, Lou X, Conrad N J, Si M, Wu H, Alghamdi, Guo S, Gordon R G and Ye P D 2016 IEEE Electron Dev. Lett. 37 556
|
[6] |
Han T T, Dun S B, Lv Y J, Gu G D, Song X B, Wang Y G, Xu P and Feng Z H 2016 J. Semicond. 37 024007
|
[7] |
Uren M J, Nash K J, Balmer R S, Martin T, Morvan E, Caillas N, Delage S L, Ducatteau D, Grimbert B and De Jaeger J C 2006 IEEE Trans. Electron Dev. 53 395
|
[8] |
Zervos M, Kostopoulos A, Constantinidis G, Kayambaki M and Georgakilas A 2002 J. Appl. Phys. 91 4387
|
[9] |
Bahat-Treidel E, Hilt O, Brunner F, Würfl J and Tränkle G 2008 IEEE Trans. Electron Dev. 55 3354
|
[10] |
Lee D S, Gao X, Guo S and Palacios T 2011 IEEE Electron Dev. Lett. 32 617
|
[11] |
Meng F, Zhang J, Zhou H, Ma J, Xue J, Dang L, Zhang L, Lu M, Ai S, Li X and Hao Y 2012 J. Appl. Phys. 112 023707
|
[12] |
Peng E, Wang X, Xiao H, Wang C, Yin H, Chen H, Feng C, Jiang L, Hou X and Wang Z 2013 J. Cryst. Growth 383 25
|
[13] |
Wang C, Zhao M D, Pei J Q, He Y L, Li X D, Zheng X F, Mao Wei, Ma X H, Zhang J C and Hao Y 2016 Acta Phys. Sin. 65 038501(in Chinese)
|
[14] |
Ho S Y, Lee C H, Tzou A J, Kou H C, Wu Y R and Huang J J 2017 IEEE Trans. Electron Dev. 64 1505
|
[15] |
Liu J, Zhou Y, Lau K M and Chen K J 2006 IEEE Electron Dev. Lett. 27 10
|
[16] |
Palacios T, Chakraborty A, Heikman S, Keller S, DenBaars S P and Mishra U K 2006 IEEE Electron Dev. Lett. 27 13
|
[17] |
Lee D S, Gao X, Guo S, Kopp D, Fay P and Palacios T 2011 IEEE Electron Dev. Lett. 32 1525
|
[18] |
Kamath A, Patil T, Adari R, Bhattacharya I, Ganguly S, Aldhaheri R W, Hussain M A and Saha D 2012 IEEE Electron Dev. Lett. 33 1690
|
[19] |
He X G, Zhao D G, Jiang D S, Zhu J J, Chen P, Liu Z S, Le L C, Yang J, Li X J, Liu J P, Zhang L Q and Yang H 2016 J. Alloys Compd. 662 16
|
[20] |
SILVACO Int., 2016 ATLAS User's Manual, Device Simulation Software (Santa Clara:CA) p. 2
|
[21] |
Ambacher O, Majewski J, Miskys C, Link A, Hermann M, Eickhoff M, Stutzmann M, Bernardini F, Fiorentini V, Tilak V, Schaff B and Eastman L F 2002 J. Phys.:Condens. Matter 14 3399
|
[22] |
Pelá R R, Caetano C, Ferreira L G, Furthmüller J and Teles L K 2011 Appl. Phys. Lett. 98 151907
|
[23] |
Gonschorek M, Carlin J F, Feltin E, Py, M A, Grandjean N, Darakchieva V, Monemar B, Lorenz M and Ramm G 2008 J. Appl. Phys. 103 093714
|
[24] |
He X G, Zhao D G and Jiang D S 2015 Chin. Phys. B 24 067301
|
[25] |
Simin G, Hu X, Tarakji A, Zhang J, Koudymov A, Saygi S, Yang J, Khan A, Shur M S and Gsaka R 2001 Jpn. J. Appl. Phys. 40 L1142
|
[26] |
Jessen G H, Fitch R C, Gillespie J K, Via G, Crespo A, Langley D, Denninghoff D J, Trejo M and Heller E R 2007 IEEE Trans. Electron Dev. 54 2589
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|