Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 087810    DOI: 10.1088/1674-1056/23/8/087810
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of high-temperature annealing on AlN thin film grown by metalorganic chemical vapor deposition

Wang Wei-Ying (王维颖), Jin Peng (金鹏), Liu Gui-Peng (刘贵鹏), Li Wei (李维), Liu Bin (刘斌), Liu Xing-Fang (刘兴昉), Wang Zhan-Guo (王占国)
Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low-dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  The effect of high-temperature annealing on AlN thin film grown by metalorganic chemical vapor deposition was investigated using atomic force microscopy, Raman spectroscopy, and deep ultra-violet photoluminescence (PL) with the excitation wavelength as short as ~ 177 nm. Annealing experiments were carried out in either N2 or vacuum atmosphere with the annealing temperature ranging from 1200 ℃ to 1600 ℃. It is found that surface roughness reduced and compressive strain increased with the annealing temperature increasing in both annealing atmospheres. As to optical properties, a band-edge emission peak at 6.036 eV and a very broad emission band peaking at about 4.7 eV were observed in the photoluminescence spectrum of the as-grown sample. After annealing, the intensity of the band-edge emission peak varied with the annealing temperature and atmosphere. It is also found that a much stronger emission band ranging from 2.5 eV to 4.2 eV is superimposed on the original spectra by annealing in either N2 or vacuum atmosphere. We attribute these deep-level emission peaks to the VAL-Om N complex in the AlN material.
Keywords:  high-temperature annealing      AlN      optical properties  
Received:  13 February 2014      Revised:  04 April 2014      Accepted manuscript online: 
PACS:  78.55.Cr (III-V semiconductors)  
  81.40.Tv (Optical and dielectric properties related to treatment conditions)  
  81.40.-z (Treatment of materials and its effects on microstructure, nanostructure, And properties)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB619306) and 863 Program of China (Grant No. 2011AA03A101).
Corresponding Authors:  Jin Peng     E-mail:  pengjin@semi.ac.cn

Cite this article: 

Wang Wei-Ying (王维颖), Jin Peng (金鹏), Liu Gui-Peng (刘贵鹏), Li Wei (李维), Liu Bin (刘斌), Liu Xing-Fang (刘兴昉), Wang Zhan-Guo (王占国) Effect of high-temperature annealing on AlN thin film grown by metalorganic chemical vapor deposition 2014 Chin. Phys. B 23 087810

[1] Feneberg M, Leute R R, Neuschl B, Thonke K and Bickermann M 2010 Phys. Rev. B 82 075208
[2] Taniyasu Y, Kasu M and Makimoto T 2006 Nature 441 325
[3] Li D B, Hu W G, Miyake H, Hiramatsu K and Song H 2010 Chin. Phys. B 19 127801
[4] Kneissl M, Yang Z H, Teepe M, Knollenberg C, Schmidt O, Schujman S and Schowalter L J 2007 J. Appl. Phys. 101 123103
[5] Dadgar A, Krost A, Christen J, Bastek B, Bertram F, Krtschil A, Hempel T, Bläsing J, Haboeck U and Hoffmann A 2006 J. Crystal Growth 297 306
[6] Liu B, Zhang S, Yin J Y, Zhang X W, Dun S B, Feng Z H and Cai S J 2013 Chin. Phys. B 22 057105
[7] Sun X J, Li D B, Chen Y R, Song H, Jiang H, Li Z M, Miao G Q and Zhang Z W 2013 Cryst. Eng. Comm. 15 6066
[8] Chen Y R, Song H, Li D B, Sun X J, Jiang H, Li Z M, Miao G Q, Zhang Z W and Zhou Y 2014 Mater. Lett. 114 26
[9] Ren F, Hao Z B, Zhang C, Hu J N and Luo Y 2010 Chin. Phys. Lett. 27 068101
[10] Chen X H, Jia C H, Chen Y H, Wang H T and Zhang W F 2014 J. Phys. D: Appl. Phys. 47 125303
[11] Kar J P, Bose G and Tuli S 2005 Surf. Coat. Technol. 198 64
[12] Inoue S, Okamotoa K, Matsuki N, Kimb T W and Fujioka H 2006 J. Crystal Growth 289 574
[13] Zolper J C, Hagerott Crawford M, Howard A J, Ramer J and Hersee S D 1996 Appl. Phys. Lett. 68 200
[14] Oh D K, Bang S Y, Choi B G, Maneeratanasarn P, Lee S K, Chung J H, Freitas J A Jr and Shim K B 2012 J. Crystal Growth 356 22
[15] Kuball M, Demangeot F, Frandon J, Renucci M A, Sands H, Batchelder D N, Clur S and Briot O 1999 Appl. Phys. Lett. 74 549
[16] Çorekçi S, Tekeli Z, Çakmak M, Özçelik S, Dinç Y, Zeybek O and Ozbay E 2009 Mater. Sci. Semicond. Process. 12 238
[17] Liu B, Gao J, Wu K M and Liu C 2009 Solid State Commun. 149 715
[18] Kar J P, Bose G and Tuli S 2005 Mater. Sci. Semicond. Process. 8 646
[19] Davydov V Y, Kitaev Y E, Goncharuk I N, Smirnov A N, Graul J, Semchinova O, Uffmann D, Smirnov M B, Mirgorodsky A P and Evarestov R A 1998 Phys. Rev. B 58 12899
[20] Li J, Nam K B, Nakarmi M L, Lin J Y and Jiang H X 2002 Appl. Phys. Lett. 81 3365
[21] Yamada Y, Choi K, Shin S, Murotani H, Taguchi T, Okada N and Amano H 2008 Appl. Phys. Lett. 92 131912
[22] Mattila T and Nieminen R M 1997 Phys. Rev. B 55 9571
[23] Nam K B, Nakarmi M L, Lin J Y and Jiang H X 2005 Appl. Phys. Lett. 86 222108
[24] Nepal N, Nakarmi M L, Lin J Y and Jiang H X 2006 Appl. Phys. Lett. 89 092107
[25] Strassburg M, Senawiratne J, Dietz N, Haboeck U and Hoffmann A 2004 J. Appl. Phys. 96 5870
[26] Schulz T, Albrecht M, Irmscher K, Hartmann C, Wollweber J and Fornari R 2011 Phys. Status Solidi B 248 1513
[27] Hoshi T, Koyamal T, Sugawara M, Uedono A and Kaeding J F 2008 Phys. Status Solidi C 5 2129
[28] Bickermann M, Epelbaum B M, Filip O, Heimann P, Nagata S and Winnacker A 2009 Phys. Status Solidi B 246 1181
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[3] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[4] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[5] Porous AlN films grown on C-face SiC by hydride vapor phase epitaxy
Jiafan Chen(陈家凡), Jun Huang(黄俊), Didi Li(李迪迪), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(7): 076802.
[6] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[9] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[10] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[11] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[12] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[13] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[14] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[15] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
No Suggested Reading articles found!