Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 087307    DOI: 10.1088/1674-1056/23/8/087307
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Forward and reverse electron transport properties across a CdS/Si multi-interface nanoheterojunction

Li Yong (李勇)a b, Wang Ling-Li (王伶俐)a, Wang Xiao-Bo (王小波)a, Yan Ling-Ling (闫玲玲)a, Su Li-Xia (苏丽霞)a, Tian Yong-Tao (田永涛)a, Li Xin-Jian (李新建)a
a Department of Physics and Laboratory of Materials Physics, Zhengzhou University, Zhengzhou 450052, China;
b Department of Physics and Solar Energy Research Center, Pingdingshan University, Pingdingshan 467000, China
Abstract  The electron transport behavior across the interface plays an important role in determining the performance of optoelectronic devices based on heterojunctions. Here through growing CdS thin film on silicon nanoporous pillar array, an untraditional, nonplanar, and multi-interface CdS/Si nanoheterojunction is prepared. The current density versus voltage curve is measured and an obvious rectification effect is observed. Based on the fitting results and model analyses on the forward and reverse conduction characteristics, the electron transport mechanism under low forward bias, high forward bias, and reverse bias are attributed to the Ohmic regime, space-charge-limited current regime, and modified Poole-Frenkel regime respectively. The forward and reverse electrical behaviors are found to be highly related to the distribution of interfacial trap states and the existence of localized electric field respectively. These results might be helpful for optimizing the preparing procedures to realize high-performance silicon-based CdS optoelectronic devices.
Keywords:  heterojunction      multi-interface nanoheterojunction      electron transport      silicon nanoporous pillar array (Si-NPA)      CdS/Si-NPA  
Received:  13 January 2014      Revised:  21 April 2014      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  73.63.Bd (Nanocrystalline materials)  
  73.63.Rt (Nanoscale contacts)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61176044 and 11074224), the Science and Technology Project for Innovative Scientist of Henan Province, China (Grant No. 1142002510017), and the Science and Technology Project on Key Problems of Henan Province, China (Grant No. 082101510007).
Corresponding Authors:  Li Xin-Jian     E-mail:  lixj@zzu.edu.cn

Cite this article: 

Li Yong (李勇), Wang Ling-Li (王伶俐), Wang Xiao-Bo (王小波), Yan Ling-Ling (闫玲玲), Su Li-Xia (苏丽霞), Tian Yong-Tao (田永涛), Li Xin-Jian (李新建) Forward and reverse electron transport properties across a CdS/Si multi-interface nanoheterojunction 2014 Chin. Phys. B 23 087307

[1] Reynolds L X, Lutz T, Dowland S, MacLachlan A, King S and Haque S A 2012 Nanoscale 4 1561
[2] Yavuz N, Yuksel S A, Karsli A and Gunes S 2013 Sol. Energy Mater. Sol. Cells 116 224
[3] Molaei M, Marandi M, Saievar-Iranizad E, Taghavinia N, Liu B, Sun H D and Sun X W 2012 J. Lumin. 132 467
[4] Duan X, Huang Y, Agarwal R and Lieber C M 2003 Nature 421 241
[5] Ma Y, Li X, Yang Z, Yu H, Wang P and Tong L 2010 Appl. Phys. Lett. 97 153122
[6] Manna S, Das S, Mondal S P, Singha R and Ray S K 2012 J. Phys. Chem. C 116 7126
[7] Eisenbarth T, Caballero R, Nichterwitz M, Kaufmann C A, Schock H-W and Unold T 2011 J. Appl. Phys. 110 094506
[8] Xu H J and Li X J 2008 Appl. Phys. Lett. 93 172105
[9] He C, Han C B, Xu Y R and Li X J 2011 J. Appl. Phys. 110 094316
[10] Xu H J and Li X J 2008 Opt. Express 16 2933
[11] Han C B, He C and Li X J 2011 Adv. Mater. 23 4811
[12] Kumar S, Sharma P and Sharma V 2012 J. Appl. Phys. 111 043519
[13] Mukherjee A 2007 J. Appl. Phys. 101 034106
[14] Deshmukh N V, Bhave T M, Ethiraj A S, Sainkar S R, Ganesan V, Bhoraskar S V and Kulkarni S K 2001 Nanotechnology 12 290
[15] Talin A A, Léonard F, Swartzentruber B S, Wang X and Hersee S D 2008 Phys. Rev. Lett. 101 076802
[16] Son D I 2010 Appl. Phys. Lett. 97 013304
[17] Simmons J G 1971 J. Phys. D: Appl. Phys. 4 613
[18] Simpkins B S, Mastro M A, Eddy J C R, Hite J K and Pehrsson P E 2011 J. Appl. Phys. 110 044303
[19] Aziz M S 2006 Solid-State Electron. 50 1238
[20] Yuksel O F, Kus M, Simsir N, Safak H, Sahin M and Yenel E 2011 J. Appl. Phys. 110 024507
[21] Yakuphanoglu F, Tugluoglu N and Karadeniz S 2007 Physica B 392 188
[22] Farag A A M, Farooq W A and Yakuphanoglu F 2011 Microelectron. Eng. 88 2894
[23] Tang X, Li G and Zhou S 2013 Nano Lett. 13 5046
[24] Gould R D 1996 Coordination Chem. Rev. 156 237
[25] Tomakin M, Altunbasş M and Bacaksiz E 2011 Physica B 406 4355
[26] Gould R D and Bowler C J 1988 Thin Solid Films 164 281
[27] Mendoza-Pérez R, Aguilar-Hernández J, Sastre-Hernández J, Ximello-Quiebras N, Contreras-Puente G, Santana-Rodríuez G, Vigil-Galán O, Moreno-García E and Morales-Acevedo A 2006 Sol. Energy 80 682
[28] Aguilar-Hernández J, Sastre-Hernández J, Ximello-Quiebras N, Mendoza-Pérez R, Vigil-Galán O, Contreras-Puente G and Cárdenas-García M 2006 Thin Solid Films 511-512 143
[1] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[4] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[5] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[6] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[7] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[8] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[9] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[10] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[11] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[12] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[13] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[14] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[15] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
No Suggested Reading articles found!