Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 077306    DOI: 10.1088/1674-1056/23/7/077306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A low specific on-resistance SOI LDMOS with a novel junction field plate

Luo Yin-Chun (罗尹春)a, Luo Xiao-Rong (罗小蓉)a b, Hu Gang-Yi (胡刚毅)b, Fan Yuan-Hang (范远航)a, Li Peng-Cheng (李鹏程)a, Wei Jie (魏杰)a, Tan Qiao (谭桥)a, Zhang Bo (张波)a
a State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
b Science and Technology on Analog Integrated Circuit Laboratory, Chongqing 400060, China
Abstract  A low specific on-resistance SOI LDMOS with a novel junction field plate (JFP) is proposed and investigated theoretically. The most significant feature of the JFP LDMOS is a PP-N junction field plate instead of a metal field plate. The unique structure not only yields charge compensation between the JFP and the drift region, but also modulates the surface electric field. In addition, a trench gate extends to the buried oxide layer (BOX) and thus widens the vertical conduction area. As a result, the breakdown voltage (BV) is improved and the specific on-resistance (Ron,sp) is decreased significantly. It is demonstrated that the BV of 306 V and the Ron,sp of 7.43 mΩ · cm2 are obtained for the JFP LDMOS. Compared with those of the conventional LDMOS with the same dimensional parameters, the BV is improved by 34.8%, and the Ron,sp is decreased by 56.6% simultaneously. The proposed JFP LDMOS exhibits significant superiority in terms of the trade-off between BV and Ron,sp. The novel JFP technique offers an alternative technique to achieve high blocking voltage and large current capacity for power devices.
Keywords:  LDMOS      RESURF      field plate      breakdown voltage      specific on-resistance  
Received:  18 December 2013      Revised:  21 January 2014      Accepted manuscript online: 
PACS:  73.40.Ty (Semiconductor-insulator-semiconductor structures)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61376079), the Postdoctoral Science Foundation of China (Grant No. 2012T50771), and the Postdoctoral Science Foundation of Chongqing City, China (Grant No. XM2012004).
Corresponding Authors:  Luo Xiao-Rong     E-mail:  xrluo@uestc.edu.cn
About author:  73.40.Ty; 85.30.De; 85.30.Tv

Cite this article: 

Luo Yin-Chun (罗尹春), Luo Xiao-Rong (罗小蓉), Hu Gang-Yi (胡刚毅), Fan Yuan-Hang (范远航), Li Peng-Cheng (李鹏程), Wei Jie (魏杰), Tan Qiao (谭桥), Zhang Bo (张波) A low specific on-resistance SOI LDMOS with a novel junction field plate 2014 Chin. Phys. B 23 077306

[1] Iqbal M M H, Udrea F and Napoli E 2009 Proc. IEEE ISPSD 247
[2] Kim H W, Park I Y, Choi Y and Chung S K 2002 Phys. Scr. T101 18
[3] Chen X B, Zhang B and Li Z J 1992 Solid-State Electron. 35 1365
[4] Wasisto H S, Gene S, Yang S M, Sihombing R O, Guo Y F, Tu S H, Lee C H, Chin Y L and Jan J S 2010 IEEE Tencon. 75
[5] Fan J, Wang Z G, Zhang B and Luo X R 2013 Chin. Phys. B 22 048501
[6] Baliga B J 1982 IEE Proc. 129 173
[7] Wolfgang F, Elmar F and Willi G 1992 IEEE Trans. Electron Dev. 39 1514
[8] Leung Y K, Amit K P, Kenneth E G, James D P and Simon W 1997 IEEE Electron Dev. Lett. 18 414
[9] Luo X R, Lei T F, Wang Y G, Yao G L, Jiang Y H, Zhou K, Wang P, Zhang Z Y, Fan J, Wang Q, Ge R, Zhang B, Li Z J and Florin U 2012 IEEE Trans. Electron Dev. 59 504
[10] Cortés I, Fernández-Martínez P, Flores D, Hidalgo S and Rebollo J 2007 Semicond. Sci. Technol. 22 1183
[11] Luo X R, Yao G L, Zhang Z Y, Jiang Y H, Zhou K, Wang P, Wang Y G, Lei T F, Zhang Y X and Wei J 2012 Chin. Phys. B 21 068501
[12] Merchant S, Arnold E, Baumgart H, Mukherjee S, Pein H and Pinker R 1991 Proc. IEEE ISPSD 31
[13] Zhang S D, Johnny K O S, Tommy M L L and Ping K K 1999 IEEE Trans. Electron Dev. 46 1036
[14] John Y W S 1975 J. Appl. Phys. 46 5247
[15] Bidin N and Razak S N A 2011 Proc. SIECPC 1
[16] Tommy M L L, Johnny K O S and Ping K K 1995 IEEE Tencon. 432
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[4] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[5] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[6] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[7] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[8] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[9] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[10] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[11] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[12] Theoretical analysis for AlGaN avalanche photodiodes with mesa and field plate structure
Ke-Xiu Dong(董可秀), Dun-Jun Chen(陈敦军), Qing Cai(蔡青), Yan-Li liu(刘燕丽), Yu-Jie Wang(王玉杰). Chin. Phys. B, 2020, 29(8): 088502.
[13] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[14] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[15] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
No Suggested Reading articles found!