Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 064101    DOI: 10.1088/1674-1056/23/6/064101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Split-ring-based metamaterial for far-field subwavelength focusing based on time reversal

Huang Hai-Yan (黄海燕), Ding Shuai (丁帅), Wang Bing-Zhong (王秉中), Zang Rui (臧锐)
Institute of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  In this paper, split-ring-based metamaterial sheets are designed for the purpose of achieving far-field subwavelength focusing, with the aid of a time-reversal technique. The metamaterial sheets are inserted into a subwavelength array consisting of four element antennas, with the element spacing being as small as 1/15 of a wavelength. Experiments are performed to investigate the effect of the metamaterial sheets on the focusing resolution. The results demonstrate that in the presence of the metamaterial sheets, the subwavelength array exhibits the ability to achieve super-resolution focusing, while there is no super-resolution focusing without the metamaterial sheets. Further investigation shows that the metamaterial sheets are contributive to achieving super-resolution by weakening the cross-correlations of the channel impulse responses between the array elements.
Keywords:  time-reversal      metamaterial      subwavelength focusing  
Received:  22 May 2013      Revised:  01 November 2013      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  84.40.Ba (Antennas: theory, components and accessories)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61071031, 61331007, and 61107018), the Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20100185110021 and 20120185130001), the Fundamental Research Funds for the Central Universities, China (Grant No. E02205205), and the Project ITR1113, China.
Corresponding Authors:  Huang Hai-Yan     E-mail:  haiyanhuang123@yahoo.com

Cite this article: 

Huang Hai-Yan (黄海燕), Ding Shuai (丁帅), Wang Bing-Zhong (王秉中), Zang Rui (臧锐) Split-ring-based metamaterial for far-field subwavelength focusing based on time reversal 2014 Chin. Phys. B 23 064101

[1] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[2] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[3] Ibraheema I A and Koch M 2007 Appl. Phys. Lett. 91 113517
[4] Grbic A and Eleftheriades G V 2002 Appl. Phys. 92 5930
[5] Freire M J, Algarin J M, Behr V C, Jakob P M and Marqués R 2011 Appl. Phys. Lett. 98 133508
[6] Grbic A, Jiang L and Merlin R 2008 Science 320 511
[7] Belov P A, Palikaras G K, Zhao Y, Rahman A, Simovski C R, Hao Y and Parini1 C 2010 Appl. Phys. Lett. 97 191905
[8] Belov P A, Hao Y and Sudhakaran S 2006 Phys. Rev. Lett. 73 033108
[9] Zhou H C, Wang B Z, Ding S and Ou H Y 2013 Acta Phys. Sin. 62 114101 (in Chinese)
[10] Ding S, Wang B Z, Ge G D, Zheng G and Liu X F 2010 Conference on 2010 Microwave and Millimeter Wave Technology, May 8-12, 2010, Chengdu, China, p. 1160
[11] Pendry J B 2008 Science 322 71
[12] Fusco V, Buchanan N and Malyuskin O 2010 IEEE Trans. Anten. Propag. 58 798
[13] Lerosey G, Rosny J, Tourin A and Fink M 2007 Science 315 1119
[14] Ge G D, Wang B Z, Huang H Y and Zheng G 2009 Acta Phys. Sin. 58 8249 (in Chinese)
[15] Chen Y M, Wang B Z and Ge G D 2012 Acta Phys. Sin. 61 024101 (in Chinese)
[16] Zhang Z M, Wang B Z, Ge G D, Liang M S and Ding S 2012 Acta Phys. Sin. 61 098401 (in Chinese)
[17] Ding S, Wang B Z, Ge G D, Wang D and Zhao D S 2011 Acta Phys. Sin. 60 104101 (in Chinese)
[18] Zhang H Y, Cao Y P, Sun X L, Chen X H and Yu J B 2010 Chin. Phys. B 19 114301
[19] Ying Y Z, Ma L and Guo S M 2011 Chin. Phys. B 20 054301
[20] Ge G D, Wang B Z, Wang D, Zhao D S and Ding S 2011 IEEE Trans. Anten. Propag. 99 1731
[21] Liang M S, Wang B Z, Zhang Z M, Ding S and Zang R 2013 Acta Phys. Sin. 62 058401 (in Chinese)
[22] Liu X, Wang B Z, Xiao S and Lai S 2010 IEEE Trans. Anten. Propag. 58 1731
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[3] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[4] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[5] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[6] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[7] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[8] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[9] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[12] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[13] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[14] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[15] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
No Suggested Reading articles found!