Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 057801    DOI: 10.1088/1674-1056/23/5/057801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Photoluminescence properties and energy transfer in Y2O3:Eu3+ nanophosphors

Cui Hang (崔航)a, Zhu Pei-Fen (朱培芬)b, Zhu Hong-Yang (祝洪洋)a, Li Hong-Dong (李红东)a, Cui Qi-Liang (崔啟良)a
a State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
b Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
Abstract  The photoluminescence (PL) properties of Y2O3:Eu3+ nanophosphors were systematically investigated with the goal of improving the color quality and quantum efficiency of Y2O3:Eu3+ nanophosphors for potential applications in nano-scale devices. The emission spectra, excitation spectra and fluorescence decay curves were employed to trace the energy transfer process from Eu3+ at C3i site to Eu3+ at C2 site. The experimental results show that the energy transfer process becomes more and more efficient with the increase in the Eu3+ concentration. The emission of Eu3+ at C2 site is favorable as it has high radiative efficiency and better color quality. The successful suppress of the emission Eu3+ at C3i is especially important for its applications in general illumination or display technology. The quantum efficiency and color quality of Y2O3:Eu3+ can be improved by controlling the energy transfer between the Eu3+ at S6 site and Eu3+ at C2 site.
Keywords:  Y2O3:Eu3+      photoluminescence      energy transfer      fluorescence lifetime  
Received:  23 December 2013      Revised:  07 February 2014      Accepted manuscript online: 
PACS:  78.20.-e (Optical properties of bulk materials and thin films)  
  78.60.Lc (Optically stimulated luminescence)  
  42.70.-a (Optical materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304111 and 51172087), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110061110011), and the Postdoctoral Research Foundation of China (Grant No. 2013M541284).
Corresponding Authors:  Zhu Hong-Yang     E-mail:  hongyangzhu@jlu.edu.cn
About author:  2014-3-18

Cite this article: 

Cui Hang (崔航), Zhu Pei-Fen (朱培芬), Zhu Hong-Yang (祝洪洋), Li Hong-Dong (李红东), Cui Qi-Liang (崔啟良) Photoluminescence properties and energy transfer in Y2O3:Eu3+ nanophosphors 2014 Chin. Phys. B 23 057801

[1] Zhu H, Ma Y, Yang H, Zhu P, Du J, Ji C and Hou D 2010 Solid State Commun. 150 1208
[2] Zhang J, Cui H, Zhu P, Ma C, Wu X, Zhu H, Ma Y and Cui Q 2014 J. Appl. Phys. 115 023502
[3] Lü Q, Zhao L, Guo F and Li M 2009 Chin. Phys. B 18 4030
[4] Ray S, Pramanik P, Singha A and Roy A 2005 J. Appl. Phys. 97 94312
[5] Konrad A, Fries T, Gahn A, Kummer F, Herr U, Tidecks R and Samwer K 1999 J. Appl. Phys. 86 3129
[6] Qi Z M, Shi C S, Zhang W W, Zhang W P and Hu T D 2002 Appl. Phys. Lett. 81 2857
[7] Rakov N, Lozano W, Maciel G S and De Araujo C B 2006 Chem. Phys. Lett. 428 134
[8] Judd B R 1962 Phys. Rev. 127 750
[9] Chang N C and Gruber J B 1964 J. Chem. Phys. 41 3227
[10] Buijs M, Meyerink A and Blasse G 1987 J. Lumin. 37 9
[11] Zych E, Karbowiak M, Domagala K and Hubert S 2002 J. Alloy. Compd. 341 381
[12] Reddy A A, Das S, Goel A, Sen R, Siegel R, Mafra L, Prakash G V and Ferreira J M F 2013 AIP Adv. 3 022126
[13] Dai Q L, Foley M E, Breshike C J, Lita A and Strouse G F 2011 J. Am. Chem. Soc. 133 15475
[14] Shang C Y, Wang X Q, Kang H and Han D M 2011 J. Appl. Phys. 109 6
[15] Krishna R H, Nagabhushana B M, Nagabhushana H, Murthy N S, Sharma S C, Shivakumara C and Chakradhar R P S 2013 J. Phys. Chem. C 117 1915
[16] Forest H and Ban G 1969 J. Electrochem. Soc. 116 474
[17] Dhanaraj J, Jagannathan R, Kutty T R N and Lu C H 2001 J. Phys. Chem. B 105 11098
[18] Jollet F, Noguera C, Thromat N, Gautier M and Duraud J P 1990 Phys. Rev. B 42 7587
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
[5] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[6] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[7] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[8] Luminescent characteristics of Tm3+/Tb3+/Eu3+ tri-doped Na5Y9F32 single crystals for white emission with high thermal stability
Lizhi Fang(方立志), Xiong Zhou(周雄), Zhiwei Zhao(赵志伟), Biao Zheng(郑标), Haiping Xia(夏海平), Jun Wang(王军), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2022, 31(12): 127802.
[9] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[10] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[11] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[12] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[13] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[14] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[15] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
No Suggested Reading articles found!