Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 057505    DOI: 10.1088/1674-1056/23/5/057505
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

Nanomagnetism:Principles, nanostructures, and biomedical applications

Yang Ce (杨策)a, Hou Yang-Long (侯仰龙)a, Gao Song (高松)b
a Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China;
b College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Abstract  Nanomagnetism is the origin of many unique properties in magnetic nanomaterials that can be used as building blocks in information technology, spintronics, and biomedicine. Progresses in nanomagnetic principles, distinct magnetic nanostructures, and the biomedical applications of nanomagnetism are summarized.
Keywords:  nanomagnetism      magnetic materials      magnetic resonance imaging (MRI)      magnetic hyperthermia  
Received:  27 March 2014      Revised:  15 April 2014      Accepted manuscript online: 
PACS:  75.75.-c (Magnetic properties of nanostructures)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  75.50.-y (Studies of specific magnetic materials)  
  87.80.Lg (Magnetic and paramagnetic resonance)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB934601), the National Natural Science Foundation of China (Grant Nos. 51125001 and 51172005), the Natural Science Foundation of Beijing, China (Grant No. 2122022), and the Doctoral Program, China (Grant No. 20120001110078).
Corresponding Authors:  Hou Yang-Long     E-mail:  hou@pku.edu.cn

Cite this article: 

Yang Ce (杨策), Hou Yang-Long (侯仰龙), Gao Song (高松) Nanomagnetism:Principles, nanostructures, and biomedical applications 2014 Chin. Phys. B 23 057505

[1] Sellmyer D J, ZhengMand Skomski R 2001 J. Phys.: Condens. Matter 13 R433
[2] Wu C Z, Yin P, Zhu X, OuYang C Z and Xie Y 2006 J. Phys. Chem. B 110 17806
[3] Kim D, Lee N, Park M, Kim B H, An K and Hyeon T 2009 J. Am. Chem. Soc. 131 454
[4] Kovalenko M V, Bodnarchuk M I, Lechner R T, Hesser G, Schaffler F and Heiss W 2007 J. Am. Chem. Soc. 129 6352
[5] Zhang L H, Wu J J, Liao H B, Hou Y L and Gao S 2009 Chem. Commun. 454 378
[6] Knobel M, Nunes W C, Socolovsky L M, De Biasi E, Vargas J M and Denardin J C 2008 J. Nanosci. Nanotechno. 8 2836
[7] Billas I M L, Chatelain A and Deheer W A 1994 Science 265 1682
[8] Chen J, Ye X C, Oh S J, Kikkawa J M, Kagan C R and Murray C B 2013 ACS Nano 7 1478
[9] Fedoseev S A, Pan A V, Rubanov S, Golovchanskiy I A and Shcherbakova O V 2013 ACS Nano 7 286
[10] Shen J and Kirschner J 2002 Surf. Sci. 500 300
[11] Yang C, Zhao H B, Hou Y L and Ma D 2012 J. Am. Chem. Soc. 134 15814
[12] Liu F, Jin Y J, Liao H B, Cai L, Tong M P and Hou Y L 2013 J. Mater. Chem. A 1 805
[13] Jin Y J, Liu F, Tong M P and Hou Y L 2012 J. Hazard Mater. 227 461
[14] Takatsu H, Ishikawa J J, Yonezawa S, Yoshino H, Shishidou T, Oguchi T, Murata K and Maeno Y 2013 Phys. Rev. Lett. 111
[15] Yang D Z, Wang F C, Ren Y, Zuo Y L, Peng Y, Zhou S M and Xue D S 2013 Adv. Funct. Mater. 23 2918
[16] Hayashi K, Ono K, Suzuki H, Sawada M, Moriya M, Sakamoto W and Yogo T 2010 Chem. Mater. 22 3768
[17] Das M, Dhak P, Gupta S, Mishra D, Maiti T K, Basak A and Pramanik P 2010 Nanotechnology 21 125103
[18] Polito L, Colombo M, Monti D, Melato S, Caneva E and Prosperi D 2008 J. Am. Chem. Soc. 130 12712
[19] P.Guimarães A 2009 Principles of Nanomagnetism (Berlin: Springer-Verlag)
[20] Hadjipanayis G C 1999 J. Magn. Magn. Mater. 200 373
[21] Luborsky F E 1961 J. Appl. Phys. 32 S171
[22] Chen C H, Knutson S J, Shen Y, Wheeler R A, Horwath J C and Barnes P N 2011 Appl. Phys. Lett. 99 012504
[23] Goll D, Berkowitz A E and Bertram H N 2004 Phys. Rev. B 18 184432
[24] Yang C, Wu J J and Hou Y L 2011 Chem. Commun. 47 5130
[25] Dormann J L, Fiorani D and Tronc E 1997 Adv. Chem. Phys. 98 283
[26] Kneller E F and Hawig R 1991 IEEE T. Magn. 27 3588
[27] Yang C and Hou Y L 2013 Rare Metals 32 105
[28] Balamurugan B, Sellmyer D J, Hadjipanayis G C and Skomski R 2012 Scripta Mater. 67 542
[29] Kim J, Barmak K, De Graef M, Lewis L H and Crew D C 2000 J. Appl. Phys. 87 6140
[30] Jiang J S, Pearson J E, Liu Z Y, Kabius B, Trasobares S, Miller D J, Bader S D, Lee D R, Haskel D, Srajer G and Liu J P 2005 J. Appl. Phys. 97 10K311
[31] Yang C, Jia L H,Wang S G, Gao C, Shi DW, Hou Y L and Gao S 2013 Sci. Rep. 3
[32] Li W, Li X H, Li L L, Zhang J W and Zhang X Y 2006 J. Appl. Phys. 99
[33] Liu F, Zhu J H, YangWL, Dong Y H, Hou Y L, Zhang C Z, Yin H and Sun S H 2014 Angew. Chem. Int. Edit. 53 2176
[34] Li W, Li L L, Nan Y, Li X H, Zhang X Y, Gunderov D V, Stolyarov V V and Popov A G 2007 Appl. Phys. Lett. 91 062509
[35] Gabay A M, Zhang Y and Hadjipanayis G C 2004 Appl. Phys. Lett. 85 446
[36] Cui W B, Takahashi Y K and Hono K 2013 Adv. Mater. 25 1966
[37] Meiklejohn W H and Bean C P 1956 Phys. Rev. 102 1413
[38] Nogues J and Schuller I K 1999 J. Magn. Magn. Mater. 192 203
[39] Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D and Nogues J 2003 Nature 423 850
[40] Nogues J, Morellon L, Leighton C, Ibarra M R and Schuller I K 2000 Phys. Rev. B 61 R6455
[41] Zheng R K, Wen G H, Fung K K and Zhang X X 2004 Phys. Rev. B 69 214431
[42] Stoner E C and Wohlfarth E P 1948 Philos. Tr. R. Soc. S. A 240 599
[43] Apsel S E, Emmert J W, Deng J and Bloomfield L A 1996 Phys. Rev. Lett. 76 1441
[44] Bucher J P, Douglass D C and Bloomfield L A 1991 Phys. Rev. Lett. 66 3052
[45] Douglass D C, Cox A J, Bucher J P and Bloomfield L A 1993 Phys. Rev. B 47 12874
[46] Zeng Y, Hao R, Xing B G, Hou Y L and Xu Z C 2010 Chem. Commun. 46 3920
[47] ZhangWD, Xiao H M, Zhu L P and Fu S Y 2009 J. Alloy Compd. 477 736
[48] Lu J, Jiao X L, Chen D R and Li W 2009 J. Phys. Chem. C 113 4012
[49] Suber L, Imperatori P, Ausanio G, Fabbri F and Hofmeister H 2005 J. Phys. Chem. B. 109 7103
[50] Hollinger R, Killinger A and Krey U 2003 J. Magn. Magn. Mater. 261 178
[51] Choe S B, Acremann Y, Scholl A, Bauer A, Doran A, Stohr J and Padmore H A 2004 Science 304 420
[52] Zhu J G, Zheng Y F and Prinz G A 2000 J. Appl. Phys. 87 6668
[53] Chien C L, Zhu F Q and Zhu J G 2007 Phys. Today 60 40
[54] Castano F J, Ross C A, Eilez A, Jung W and Frandsen C 2004 Phys. Rev. B 69
[55] Jia C J, Sun L D, Luo F, Han X D, Heyderman L J, Yan Z G, Yan C H, Zheng K, Zhang Z, Takano M, Hayashi N, Eltschka M, Klaui M, Rudiger U, Kasama T, Cervera-Gontard L, Dunin-Borkowski R E, Tzvetkov G and Raabe J 2008 J. Am. Chem. Soc. 130 16968
[56] Na H B, Song I C and Hyeon T 2009 Adv. Mater. 21 2133
[57] Hao R, Xing R J, Xu Z C, Hou Y L, Gao S and Sun S H 2010 Adv. Mater. 22 2729
[58] Henkelman R M, Stanisz G J and Graham S J 2001 Nmr. Biomed. 14 57
[59] Zhao Z H, Zhou Z J, Bao J F, Wang Z Y, Hu J, Chi X Q, Ni K Y, Wang R F, Chen X Y, Chen Z and Gao J H 2013 Nat. Commun. 4 2266
[60] Fortin J P, Wilhelm C, Servais J, Menager C, Bacri J C and Gazeau F 2007 J. Am. Chem. Soc. 129 2628
[61] Rosensweig R E 2002 J. Magn. Magn. Mater. 252 370
[62] Josephson L, Perez JMandWeissleder R 2001 Angew. Chem. Int. Edit. 40 3204
[63] Perez J M, Josephson L, O’Loughlin T, Hogemann D and Weissleder R 2002 Nat. Biotechnol. 20 816
[1] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[2] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[3] Formation of L10-FeNi hard magnetic material from FeNi-based amorphous alloys
Yaocen Wang(汪姚岑), Ziyan Hao(郝梓焱), Yan Zhang(张岩), Xiaoyu Liang(梁晓宇), Xiaojun Bai(白晓军), and Chongde Cao(曹崇德). Chin. Phys. B, 2022, 31(4): 046301.
[4] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[5] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[6] Oxygen vacancy control of electrical, optical, and magnetic properties of Fe0.05Ti0.95O2 epitaxial films
Qing-Tao Xia(夏清涛), Zhao-Hui Li(李召辉), Le-Qing Zhang(张乐清), Feng-Ling Zhang(张凤玲), Xiang-Kun Li(李祥琨), Heng-Jun Liu(刘恒均), Fang-Chao Gu(顾方超), Tao Zhang(张涛), Qiang Li(李强), and Qing-Hao Li(李庆浩). Chin. Phys. B, 2021, 30(11): 117701.
[7] Hierarchical lichee-like Fe3O4 assemblies and their high heating efficiency in magnetic hyperthermia
Wen-Yu Li(李文宇), Wen-Tao Li(李文涛), Bang-Quan Li(李榜全), Li-Juan Dong(董丽娟), Tian-Hua Meng(孟田华), Ge Huo(霍格), Gong-Ying Liang(梁工英), and Xue-Gang Lu(卢学刚). Chin. Phys. B, 2021, 30(10): 104402.
[8] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[9] Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid
S Rosales, N Casillas, A Topete, O Cervantes, G Gonz\'alez, J A Paz, and M E Cano†. Chin. Phys. B, 2020, 29(10): 100502.
[10] Mn-based permanent magnets
Jinbo Yang(杨金波), Wenyun Yang(杨文云), Zhuyin Shao(邵珠印), Dong Liang(梁栋), Hui Zhao(赵辉), Yuanhua Xia(夏元华), Yunbo Yang(杨云波). Chin. Phys. B, 2018, 27(11): 117503.
[11] Serrated magnetic properties in metallic glass by thermal cycle
Myong-Chol Ri(李明哲), Sajad Sohrabi, Da-Wei Ding(丁大伟), Bang-Shao Dong(董帮少), Shao-Xiong Zhou(周少雄), Wei-Hua Wang(汪卫华). Chin. Phys. B, 2017, 26(6): 066101.
[12] Structure dependence of magnetic properties in yttrium iron garnet by metal-organic decomposition method
Yuan Liu(刘园), Xiang Wang(王翔), Jie Zhu(朱杰), Runsheng Huang(黄润生), Dongming Tang(唐东明). Chin. Phys. B, 2017, 26(5): 057501.
[13] Effects of Mg substitution on the structural and magnetic properties of Co0.5Ni0.5-xMgxFe2O4 nanoparticle ferrites
R M Rosnan, Z Othaman, R Hussin, Ali A Ati, Alireza Samavati, Shadab Dabagh, Samad Zare. Chin. Phys. B, 2016, 25(4): 047501.
[14] Fabrication and magnetic properties of 4SC(NH2)2-Ni0.97Cu0.03Cl2 single crystals
Chen Li-Min (陈丽敏), Guo Ying (郭颖), Liu Xu-Guang (刘旭光), Xie Qi-Yun (解其云), Tao Zhi-Kuo (陶志阔), Chen Jing (谌静), Zhou Ling-Ling (周玲玲), Liu Chun-Sheng (刘春生). Chin. Phys. B, 2015, 24(12): 127503.
[15] Novel magnetic vortex nanorings/nanodiscs: Synthesis and theranostic applications
Liu Xiao-Li (刘晓丽), Yang Yong (杨勇), Wu Jian-Peng (吴建鹏), Zhang Yi-Fan (张艺凡), Fan Hai-Ming (樊海明), Ding Jun (丁军). Chin. Phys. B, 2015, 24(12): 127505.
No Suggested Reading articles found!