Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 038202    DOI: 10.1088/1674-1056/23/3/038202
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Self-consistent field theory of adsorption of flexible polyelectrolytes onto an oppositely charged sphere

Tong Zhao-Yang (童朝阳)a, Zhu Yue-Jin (诸跃进)b, Tong Chao-Hui (童朝晖)b
a Department of Physics, Hunan Normal University, Changsha 415001, China;
b Department of Physics, Ningbo University, Ningbo 315211, China
Abstract  The adsorption of flexible polyelectrolyte (PE) with the smeared charge distribution onto an oppositely charged sphere immersed in a PE solution is studied numerically with the continuum self-consistent field theory. The power law scaling relationships between the boundary layer thickness and the surface charge density and the charge fraction of PE chains revealed in the study are in good agreement with the existing analytical result. The curvature effect on the degree of charge compensation of the total amount of charges on the adsorbed PE chains over the surface charges is examined, and a clear understanding of it based on the dependences of the degree of charge compensation on the surface charge density and the charge fraction of PE chains is established.
Keywords:  polyelectrolyte      adsorption      self-consistent field theory  
Received:  10 June 2013      Revised:  03 September 2013      Accepted manuscript online: 
PACS:  82.35.Rs (Polyelectrolytes)  
  68.47.Pe (Langmuir-Blodgett films on solids; polymers on surfaces; biological molecules on surfaces)  
  41.20.Cv (Electrostatics; Poisson and Laplace equations, boundary-value problems)  
Fund: Project supports by the National Natural Science Foundation of China (Grant Nos. 21074062 and 11174163), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China, and the Scientific Research Fund of Zhejiang Provincial Educational Department, China (Grant No. Y200907455).
Corresponding Authors:  Tong Chao-Hui     E-mail:  tongchaohui@nbu.edu.cn

Cite this article: 

Tong Zhao-Yang (童朝阳), Zhu Yue-Jin (诸跃进), Tong Chao-Hui (童朝晖) Self-consistent field theory of adsorption of flexible polyelectrolytes onto an oppositely charged sphere 2014 Chin. Phys. B 23 038202

[1] Fleer G J, Cohen S M A, Scheutjens J M H M, Gasgove T and Vincent B 1993 Polymer at Interfaces (London: Chapman and Hall)
[2] Dautzenberg H, Jaeger W, Kotz J, Philipp B, Seidel C and Stscherbina D 1994 Polyelectrolytes: Formation, Characterization and Application (Munich: Hanser Gardner)
[3] Naji A, Seidel C and Netz R R 2006 Adv. Polym. Sci. 198 149
[4] Claesson P M, Dedinaite A and Rojas O 2003 J. Adv. Colloid Interface Sci. 104 53
[5] Dobrynin A V 2008 Curr. Opin. Colloid Interface Sci. 13 376
[6] Podgornik R and Licer M 2006 Curr. Opin. Colloid Interface Sci. 11 273
[7] Ulrich S, Seijo M and Stoll S 2006 Curr. Opin. Colloid Interface Sci. 11 268
[8] Boroudjerdi H, Kim Y W, Naji A, Netz R R, Schlagberger X and Serr A 2005 Rhys. Rep. 416 129
[9] Netz R R and Andelman D 2003 Phys. Rep. 380 1
[10] Claesson P M, Poptoshev E, Blomberg E and Dedinaite A 2005 Adv. Colloid Interface Sci. 114 173
[11] Muthukumar M 1987 J. Chem. Phys. 86 7230
[12] Linse P 1996 Macromolecules 29 326
[13] Man X, Yang S, Yan D D and Shi A C 2008 Macromolecules 41 5451
[14] Wang Q 2005 Macromolecules 38 8911
[15] Wang Z J, Li B H, Ding D T and Wang Q 2011 Macromolecules 44 8607
[16] Messina R, Holm C and Kremer K 2004 J. Polym. Sci. Part B 42 3557
[17] Shafir A, Andelman D and Netz R R 2003 J. Chem. Phys. 119 2355
[18] Winkler R G and Cherstvy A G 2006 Phys. Rev. Lett. 96 066103
[19] Cherstvy A G and Winkler R G 2012 J. Phys. Chem. B 116 9838
[20] Cherstvy A G and Winkler R G 2011 Phys. Chem. Chem. Phys. 13 11686
[21] Tong C, Zhu Y J, Zhang H D, Qiu F, Tang P and Yang Y L 2011 J. Phys. Chem. B 115 11307
[22] Tong C 2012 J. Chem. Phys. 137 104904
[23] Liu Y X, Zhang H D, Tong C and Yang Y L 2011 Macromolecules 44 8261
[24] Netz R R and Joanny J F 1999 Macromolecules 32 9013
[25] Tian W D and Ma Y Q 2010 Macromolecules 43 1575
[26] Ren C L, Tian W D, Szleifer I and Ma Y Q 2011 Macromolecules 44 1719
[27] Shi A C and Noolandi J 1999 Macromol. Theory Simul. 8 214
[28] Wang Q, Taniguchi T and Fredrickson G H 2004 J. Phys. Chem. B 108 6733
[29] Tong C H and Zhu Y J 2010 Chin. Phys. B 19 048702
[30] Lian Z J 2011 Chin. Phys. Lett. 28 058201
[31] Naji A, Jungblut S, Moreira A G and Netz R R 2005 Physica A 352 131
[32] Zhang L Y and Wang P Y 2008 Chin. Phys. Lett. 25 3818
[33] Narambuena C F, Beltramo D M and Leiva E P M 2007 Macromolecules 40 7336
[34] Wang L, Liang H and Wu J 2010 J. Chem. Phys. 133 044906
[35] Carrillo J M Y and Dobrynin A V 2007 Langmuir 23 2472
[1] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[4] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[5] Enhancing the thermoelectric performance through the mutual interaction between conjugated polyelectrolytes and single-walled carbon nanotubes
Shuxun Wan(万树勋), Zhongming Chen(陈忠明), Liping Hao(郝丽苹), Shichao Wang(王世超), Benzhang Li(李本章), Xiao Li(黎潇), Chengjun Pan(潘成军), and Lei Wang(王雷). Chin. Phys. B, 2022, 31(2): 028104.
[6] Water adsorption performance of UiO-66 modified by MgCl2 for heat transformation applications
Jia-Li Liu(刘佳丽), Guo-Dong Fu(付国栋), Ping Wu(吴平), Shang Liu(刘尚), Jin-Guang Yang(杨金光), Shi-Ping Zhang(张师平), Li Wang(王立), Min Xu(许闽), and Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2022, 31(11): 118101.
[7] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[8] Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity
Qing-Hai Hao(郝清海) and Jie Cheng(成洁). Chin. Phys. B, 2021, 30(6): 068201.
[9] Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time
Yan-Yan Feng(冯艳艳), Xiao-Di Niu(牛潇迪), Yong-Hui Xu (徐永辉), and Wen Yang(杨文). Chin. Phys. B, 2021, 30(4): 048101.
[10] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[11] High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)
Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada. Chin. Phys. B, 2020, 29(6): 067901.
[12] STM study of selenium adsorption on Au(111) surface
Bin Liu(刘斌), Yuan Zhuang(庄源), Yande Que(阙炎德), Chaoqiang Xu(徐超强), Xudong Xiao(肖旭东). Chin. Phys. B, 2020, 29(5): 056801.
[13] Beryllium carbide as diffusion barrier against Cu: First-principles study
Hua-Liang Cao(曹华亮), Xin-Lu Cheng(程新路), Hong Zhang(张红). Chin. Phys. B, 2020, 29(1): 016601.
[14] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[15] Real-space observation on standing configurations of phenylacetylene on Cu (111) by scanning probe microscopy
Jing Qi(戚竞), Yi-Xuan Gao(高艺璇), Li Huang(黄立), Xiao Lin(林晓), Jia-Jia Dong(董佳家), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2019, 28(6): 066801.
No Suggested Reading articles found!