Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 068201    DOI: 10.1088/1674-1056/abd7d2
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity

Qing-Hai Hao(郝清海) and Jie Cheng(成洁)
College of Science, Civil Aviation University of China, Tianjin 300300, China
Abstract  It is commonly realized that polydispersity may significantly affect the surface modification properties of polymer brush systems. In light of this, we systematically study morphologies of bidisperse polyelectrolyte brush grafted onto a spherical nanocolloid in the presence of trivalent counterions using molecular dynamics simulations. Via varying polydispersity, grafting density, and solvent selectivity, the effects of electrostatic correlation and excluded volume are focused, and rich phase behaviors of binary mixed polyelectrolyte brush are predicted, including a variety of pinned-patch morphologies at low grafting density and micelle-like structures at high grafting density. To pinpoint the mechanism of surface structure formation, the shape factor of two species of polyelectrolyte chains and the pair correlation function between monomers from different polyelectrolyte ligands are analyzed carefully. Also, electrostatic correlations, manifested as the bridging through trivalent counterions, are examined by identifying four states of trivalent counterions. Our simulation results may be useful for designing smart stimuli-responsive materials based on mixed polyelectrolyte coated surfaces.
Keywords:  surface morphologies      polydisperse polyelectrolyte brush      solvent selectivity      molecular dynamics simulation  
Received:  17 November 2020      Revised:  23 December 2020      Accepted manuscript online:  04 January 2021
PACS:  82.35.Rs (Polyelectrolytes)  
  31.15.at (Molecule transport characteristics; molecular dynamics; electronic structure of polymers)  
  64.75.Va (Phase separation and segregation in polymer blends/polymeric solutions)  
  64.75.Yz (Self-assembly)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 3122020080).
Corresponding Authors:  Qing-Hai Hao     E-mail:  qhhao@cauc.edu.cn

Cite this article: 

Qing-Hai Hao(郝清海) and Jie Cheng(成洁) Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity 2021 Chin. Phys. B 30 068201

[1] Greino-Iankovski A and Loh W 2020 Colloid Surf. A 586 124208
[2] Bixler G D and Bhushan B 2012 Phil. Trans. R. Soc. A 370 2381
[3] Kreer T 2016 Soft Matter 12 3479
[4] Motornov M, Tam T K, Pita M, Tokarev I, Katz E and Minko S 2009 Nanotechnology 20 434006
[5] Zhao B and Zhu L 2009 Macromolecules 42 9369
[6] Chen C Y, Tang P and Qiu F 2014 J. Polym. Sci. 52 1583
[7] Tan H G, Xia G, Liu L X and Miao B 2019 Phys. Chem. Chem. Phys. 21 20031
[8] Tan H G, Xia G, Liu L X, Niu X H and Hao Q H 2019 Chin. J. Polym. Sci. 38 394
[9] Marko J F and Witten T A 1991 Phys. Rev. Lett. 66 1541
[10] Wang Y Q, Yang G, Tang P, Qiu F, Yang Y L and Zhu L 2011 J. Chem. Phys. 134 134903
[11] Ma X, Yang Y Z, Zhu L, Zhao B, Tang P and Qiu F 2013 J. Chem. Phys. 139 214902
[12] Egorov S A 2012 Soft Matter 8 3971
[13] Hur S, Frischknecht A L, Huber D L and Fredrickson G H 2011 Soft Matter 7 8776
[14] Qi S H, Klushin L I, Skvortsov A M and Schmid F 2016 Macromolecules 49 9665
[15] Jackson A M, Myerson J W and Stellacci F 2004 Nat. Mater. 3 330
[16] Bao C, Tang S, Wright R A E, Tang P, Qiu F, Zhu L and Zhao B 2014 Macromolecules 47 6824
[17] Rossner C, Tang Q, Müller M and Kothleitner G 2018 Soft Matter 14 4551
[18] Wei W, Kim T Y, Balamurugan A, Sun J, Chen R, Ghosh A, Rodolakis F, McChesney J L, Lakkham A, Evans P G, Hur S M and Gopalan P 2019 ACS Macro Lett. 8 1086
[19] Wang Z and Li B H 2016 Chin. Phys. B 25 016402
[20] Dong J and Zhou J 2013 Macromol. Theory Simulat. 22 174
[21] Gao H M, Liu H, Zhang R and Lu Z Y 2019 J. Phys. Chem. B 123 10311
[22] Zhang F, Ding H D, Duan C, Zhao S L and Tong C H 2017 Chin. Phys. B 26 088204
[23] Okrugin B M, Richter R P, Leermakers F A M, Neelov I M, Borisov O V and Zhulina E B 2018 Soft Matter 14 6230
[24] Vu B, Chen M, Crawford R J and Ivanova E P 2009 Molecules 14 2535
[25] Kiani C, Cheng L, Wu Y J, Yee A J and Yang B B 2002 Cell Res. 12 19
[26] Button B, Cai L H, Ehre C, Kesimer M, Hill D B, Sheehan J K, Boucher R C and Rubinstein M 2012 Science 337 937
[27] Kremer K and Grest G S 1990 J. Chem. Phys. 92 5057
[28] Gartner T E and Jayaraman A 2019 Macromolecules 52 755
[29] Plimpton S J 1995 J. Comput. Phys. 117 1
[30] Thompson P A, Grest G S and Robbins M O 1992 Phys. Rev. Lett. 68 3448
[31] Murat M and Grest G S 1996 Macromolecules 29 1278
[32] Guptha V S and Hsiao P Y 2014 Polymer 55 2900
[33] Jusufi A 2006 J. Chem. Phys. 124 044908
[34] Yeh I C and Berkowitz M L 1999 J. Chem. Phys. 111 3155
[35] Carrillo J M Y and Dobrynin A V 2011 Macromolecules 44 5798
[36] Jackson N E, Brettmann B K, Vishwanath V, Tirrell M and d Pablo J J 2017 ACS Macro Lett. 6 155
[37] Wolterink J K, Leermakers F A M, Fleer G J, Koopal L K, Zhulina E B and Borisov O V 1999 Macromolecules 32 2365
[38] Csajka F S and Seidel C 2000 Macromolecules 33 2728
[39] Lane J M D and Grest G S 2010 Phys. Rev. Lett. 104 235501
[40] Liu L, Pincus P A and Hyeon C 2017 Macromolecules 50 1579
[41] Yu J, Jackson N E, Xu X, Brettmann B K, Ruths M, de Pablo J J and Tirrell M 2017 Sci. Adv. 3 1497
[42] Hao Q H, Liu L X, Xia G, Liu L Y and Miao B 2020 Colloid Polym. Sci. 298 21
[43] Hao Q H, Cheng J, Liu L X, Tan H G, Wei T, Liu L Y and Miao B 2020 Macromolecules 53 7187
[44] Chen L, Merlitz H, He S, Wu C X and Sommer J U 2011 Macromolecules 44 3109
[45] Brettmann B, Pincus P and Tirrell M 2017 Macromolecules 50 1225
[46] Manning G S 1969 J. Chem. Phys. 51 924
[47] Miao B and Vilgis T A 2012 Macromol. Theory Simul. 21 582
[48] Dong J Q and Zhou J 2013 Macromol. Theory Simul. 22 174
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[14] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
[15] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
No Suggested Reading articles found!