Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 016601    DOI: 10.1088/1674-1056/ab593e
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Beryllium carbide as diffusion barrier against Cu: First-principles study

Hua-Liang Cao(曹华亮)1, Xin-Lu Cheng(程新路)1,2, Hong Zhang(张红)1,2
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 College of Physics, Sichuan University, Chengdu 610065, China
Abstract  Beryllium carbide is used in inertial confinement fusion (ICF) capsule ablation material due to its low atomic number, low opacity, and high melting point properties. We used the method of climbing image nudged elastic band (CINEB) to calculate the diffusion barrier of copper atom in the crystal of beryllium and beryllium carbide. The diffusion barrier of copper atom in crystal beryllium is only 0.79 eV, and the barrier in beryllium carbide is larger than 2.85 eV. The three structures of beryllium carbide:anti-fluorite Be2C, Be2C-I, and Be2C-III have a good blocking effect to the diffusion of copper atom. Among them, the Be2C-III structure has the highest diffusion barrier of 6.09 eV. Our research can provide useful help for studying Cu diffusion barrier materials.
Keywords:  diffusion barrier      beryllium carbide      adsorption energy  
Received:  22 October 2019      Revised:  18 November 2019      Accepted manuscript online: 
PACS:  66.30.Ny (Chemical interdiffusion; diffusion barriers)  
  67.80.dj (Defects, impurities, and diffusion)  
  31.15.eg (Exchange-correlation functionals (in current density functional theory))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974253 and 11774248) and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2017YFA0303600).
Corresponding Authors:  Hong Zhang     E-mail:  hongzhang@scu.edu.cn

Cite this article: 

Hua-Liang Cao(曹华亮), Xin-Lu Cheng(程新路), Hong Zhang(张红) Beryllium carbide as diffusion barrier against Cu: First-principles study 2020 Chin. Phys. B 29 016601

[1] Mitteau R, Stangeby P, Lowry C, Firdaouss M, Labidi H, Loarte A, Merola M, Pitts R and Raffray R 2011 J. Nucl. Mater. 415 S969
[2] Spilker B, Linke J, Loewenhoff T, Pintsuk G and Wirtz M 2017 Nucl. Mater. Energy 12 1184
[3] Kline J, A Yi S, Simakov A, et al. 2016 Phys. Plasmas 23 056310
[4] Wilson D C, Bradley P A, Hoffman N M, Swenson F J, Smitherman D P, Chrien R E, Margevicius R W, Thoma D J, Foreman L R, Hoffer J K, Goldman S R, Caldwell S E, Dittrich T R, Haan S W, Marinak M M, Pollaine S M and Sanchez J J 1998 Phys. Plasmas 5 1953
[5] Moses E I, Boyd R N, Remington B A, Keane C J and Al-Ayat R 2009 Phys. Plasmas 16 041006
[6] Zylstra A B, Yi S A, MacLaren S, et al. 2018 Phys. Plasmas 25 102704
[7] MacKinnon A J, Meezan N B, Ross J S, et al. 2014 Phys. Plasmas 21 056318
[8] Simakov A N, Wilson D C, Yi S A, Kline J L, Clark D S, Milovich J L, Salmonson J D and Batha S H 2014 Phys. Plasmas 21 022701
[9] Youngblood K P, Huang H, Xu H W, Hayes J, Moreno K A, Wu J J, Nikroo A, Alford C A, Hamza A V, Kucheyev S O, Wang Y M and Wu K J 2013 Fusion Sci. Technol. 63 208
[10] Xu H, Youngblood K P, Huang H, Wu J J, Moreno K A, Nikroo A, Shin S J, Wang Y M and Hamza A V 2013 Fusion Sci. Technol. 63 202
[11] Rovner L H and Hopkins G R 1976 Nucl. Technol. 29 274
[12] Liu X, Cheng X L and Lu Y P 2017 Phys. Lett. A 381 3211
[13] Anghel A, Porosnicu C, Lungu C P, Sugiyama K, Krieger C and Roth J 2011 J. Nucl. Mater. 416 9
[14] Kost F, Linsmeier C, Oberkofler M, Reinelt M, Balden M, Herrmann A and Lindig S 2009 J. Nucl. Mater. 390-391 975
[15] Mateus R, Carvalho P A, Franco N, Alves L C, Fonseca M, Porosnicu C, Lungu C P and Alves E 2013 J. Nucl. Mater. 442 S320
[16] Luo B C, Zhang J Q, He Y D, Chen L, Luo J S, Li K and Wu W D 2017 High Power Laser Sci. 5 e10
[17] Joshi K B, Trivedi D K, Paliwal U and Galav K L 2016 Mater. Res. Express 3 055601
[18] Tzeng C T, Tsuei K D and Lo W S 1998 Phys. Rev. B 58 6837
[19] Shih W S, Stephens R B and James W J 2000 Fusion Sci. Technol. 37 24
[20] Wyckoff R W G 1963 Crystal Structures, Vol. 1, 2nd edn. (New York: Interscience)
[21] Li Y F, Liao Y L and Chen Z F 2014 Angew. Chem. Int. Edit. 53 7248
[22] Naseri M, Jalilian J, Parandin F and Salehi K 2018 Phys. Lett. A 382 2144
[23] Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978
[24] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[25] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[26] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[29] Bučko T, Hafner J, Lebégue S and Ángyán J G 2010 J. Phys. Chem. A 114 11814
[30] Krimmel H and Fähnle M 1996 J. Nucl. Mater. 231 159
[31] Middleburgh S C and Grimes R W 2011 Acta Mater. 59 7095
[32] Zhang X, Li X, Wu P, Chen S, Zhang S, Chen N and Huai X 2018 Curr. Appl. Phys. 18 1108
[33] Liu H, Dong H, Ji Y, Wang L, Hou T and Li Y 2019 Appl. Surf. Sci. 466 737
[34] Ashcroft N W and Mermin N D 1976 Solid State Physics (New York: Cornell University) p. 77
[35] Huang H, Xu H W, Youngblood K P, Wall D R, Stephens R B, Moreno K A, Nikroo A, Wu K J, Wang M and Hamza A V 2013 Fusion. Sci. Technol. 63 190
[36] Butrymowicz D B, Manning J R and Read M E 1975 J. Phys. Chem. Ref. Data 4 177
[37] Stackelberg M V and Quatram F 1934 Z. Physik. Chem. 27 50
[38] Lee C H, Lambrecht W R L and Segall B 1995 Phys. Rev. B 51 10392
[1] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[2] Energetics and diffusion of point defects in Au/Ag metals:A molecular dynamics study
Zhi-Yong Liu(刘志勇), Bin He(何彬), Xin Qu(瞿鑫), Li-Bo Niu(牛莉博), Ru-Song Li(李如松), Fei Wang(王飞). Chin. Phys. B, 2019, 28(8): 083401.
[3] Na decorated B6 cluster and its hydrogen storage properties
Ruan Wen (阮文), Wu Dong-Lan (伍冬兰), Luo Wen-Lang (罗文浪), Yu Xiao-Guang (余晓光), Xie An-Dong (谢安东). Chin. Phys. B, 2014, 23(2): 023102.
[4] The investigation of ZnO:Al2O3/metal composite back reflectors in amorphous silicon germanium thin film solar cells
Wang Guang-Hong (王光红), Zhao Lei (赵雷), Yan Bao-Jun (闫保军), Chen Jing-Wei (陈静伟), Wang Ge (王革), Diao Hong-Wei (刁宏伟), Wang Wen-Jing (王文静). Chin. Phys. B, 2013, 22(6): 068102.
[5] Comparative study of adsorption characteristics of Cs on the GaN (0001) and GaN (0001) surfaces
Du Yu-Jie(杜玉杰), Chang Ben-Kang(常本康), Wang Hong-Gang(王洪刚), Zhang Jun-Ju(张俊举), and Wang Mei-Shan(王美山) . Chin. Phys. B, 2012, 21(6): 067103.
[6] Water adsorption on the Be(0001) surface: from monomer to trimer adsorption
Ning Hua(宁华), Tao Xiang-Ming(陶向明), and Tan Ming-Qiu(谭明秋) . Chin. Phys. B, 2012, 21(1): 016802.
[7] Density-functional study of CO adsorbed on RhN (N=2–19) clusters
Tian Fu-Yang(田付阳) and Shen Jiang(申江) . Chin. Phys. B, 2011, 20(12): 123101.
[8] Density functional theory calculations of tetracene on low index surfaces of copper crystal
Dou Wei-Dong(窦卫东), Zhang Han-Jie(张寒洁), and Bao Shi-Ning(鲍世宁). Chin. Phys. B, 2009, 18(1): 344-348.
[9] First-principle study of Li ion diffusion in copper thin film
Xiong Zhi-Hua (熊志华), Lei Min-Sheng (雷敏生). Chin. Phys. B, 2005, 14(6): 1199-1204.
No Suggested Reading articles found!