CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Beryllium carbide as diffusion barrier against Cu: First-principles study |
Hua-Liang Cao(曹华亮)1, Xin-Lu Cheng(程新路)1,2, Hong Zhang(张红)1,2 |
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; 2 College of Physics, Sichuan University, Chengdu 610065, China |
|
|
Abstract Beryllium carbide is used in inertial confinement fusion (ICF) capsule ablation material due to its low atomic number, low opacity, and high melting point properties. We used the method of climbing image nudged elastic band (CINEB) to calculate the diffusion barrier of copper atom in the crystal of beryllium and beryllium carbide. The diffusion barrier of copper atom in crystal beryllium is only 0.79 eV, and the barrier in beryllium carbide is larger than 2.85 eV. The three structures of beryllium carbide:anti-fluorite Be2C, Be2C-I, and Be2C-III have a good blocking effect to the diffusion of copper atom. Among them, the Be2C-III structure has the highest diffusion barrier of 6.09 eV. Our research can provide useful help for studying Cu diffusion barrier materials.
|
Received: 22 October 2019
Revised: 18 November 2019
Accepted manuscript online:
|
PACS:
|
66.30.Ny
|
(Chemical interdiffusion; diffusion barriers)
|
|
67.80.dj
|
(Defects, impurities, and diffusion)
|
|
31.15.eg
|
(Exchange-correlation functionals (in current density functional theory))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974253 and 11774248) and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2017YFA0303600). |
Corresponding Authors:
Hong Zhang
E-mail: hongzhang@scu.edu.cn
|
Cite this article:
Hua-Liang Cao(曹华亮), Xin-Lu Cheng(程新路), Hong Zhang(张红) Beryllium carbide as diffusion barrier against Cu: First-principles study 2020 Chin. Phys. B 29 016601
|
[1] |
Mitteau R, Stangeby P, Lowry C, Firdaouss M, Labidi H, Loarte A, Merola M, Pitts R and Raffray R 2011 J. Nucl. Mater. 415 S969
|
[2] |
Spilker B, Linke J, Loewenhoff T, Pintsuk G and Wirtz M 2017 Nucl. Mater. Energy 12 1184
|
[3] |
Kline J, A Yi S, Simakov A, et al. 2016 Phys. Plasmas 23 056310
|
[4] |
Wilson D C, Bradley P A, Hoffman N M, Swenson F J, Smitherman D P, Chrien R E, Margevicius R W, Thoma D J, Foreman L R, Hoffer J K, Goldman S R, Caldwell S E, Dittrich T R, Haan S W, Marinak M M, Pollaine S M and Sanchez J J 1998 Phys. Plasmas 5 1953
|
[5] |
Moses E I, Boyd R N, Remington B A, Keane C J and Al-Ayat R 2009 Phys. Plasmas 16 041006
|
[6] |
Zylstra A B, Yi S A, MacLaren S, et al. 2018 Phys. Plasmas 25 102704
|
[7] |
MacKinnon A J, Meezan N B, Ross J S, et al. 2014 Phys. Plasmas 21 056318
|
[8] |
Simakov A N, Wilson D C, Yi S A, Kline J L, Clark D S, Milovich J L, Salmonson J D and Batha S H 2014 Phys. Plasmas 21 022701
|
[9] |
Youngblood K P, Huang H, Xu H W, Hayes J, Moreno K A, Wu J J, Nikroo A, Alford C A, Hamza A V, Kucheyev S O, Wang Y M and Wu K J 2013 Fusion Sci. Technol. 63 208
|
[10] |
Xu H, Youngblood K P, Huang H, Wu J J, Moreno K A, Nikroo A, Shin S J, Wang Y M and Hamza A V 2013 Fusion Sci. Technol. 63 202
|
[11] |
Rovner L H and Hopkins G R 1976 Nucl. Technol. 29 274
|
[12] |
Liu X, Cheng X L and Lu Y P 2017 Phys. Lett. A 381 3211
|
[13] |
Anghel A, Porosnicu C, Lungu C P, Sugiyama K, Krieger C and Roth J 2011 J. Nucl. Mater. 416 9
|
[14] |
Kost F, Linsmeier C, Oberkofler M, Reinelt M, Balden M, Herrmann A and Lindig S 2009 J. Nucl. Mater. 390-391 975
|
[15] |
Mateus R, Carvalho P A, Franco N, Alves L C, Fonseca M, Porosnicu C, Lungu C P and Alves E 2013 J. Nucl. Mater. 442 S320
|
[16] |
Luo B C, Zhang J Q, He Y D, Chen L, Luo J S, Li K and Wu W D 2017 High Power Laser Sci. 5 e10
|
[17] |
Joshi K B, Trivedi D K, Paliwal U and Galav K L 2016 Mater. Res. Express 3 055601
|
[18] |
Tzeng C T, Tsuei K D and Lo W S 1998 Phys. Rev. B 58 6837
|
[19] |
Shih W S, Stephens R B and James W J 2000 Fusion Sci. Technol. 37 24
|
[20] |
Wyckoff R W G 1963 Crystal Structures, Vol. 1, 2nd edn. (New York: Interscience)
|
[21] |
Li Y F, Liao Y L and Chen Z F 2014 Angew. Chem. Int. Edit. 53 7248
|
[22] |
Naseri M, Jalilian J, Parandin F and Salehi K 2018 Phys. Lett. A 382 2144
|
[23] |
Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978
|
[24] |
Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
|
[25] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[26] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[27] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[28] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[29] |
Bučko T, Hafner J, Lebégue S and Ángyán J G 2010 J. Phys. Chem. A 114 11814
|
[30] |
Krimmel H and Fähnle M 1996 J. Nucl. Mater. 231 159
|
[31] |
Middleburgh S C and Grimes R W 2011 Acta Mater. 59 7095
|
[32] |
Zhang X, Li X, Wu P, Chen S, Zhang S, Chen N and Huai X 2018 Curr. Appl. Phys. 18 1108
|
[33] |
Liu H, Dong H, Ji Y, Wang L, Hou T and Li Y 2019 Appl. Surf. Sci. 466 737
|
[34] |
Ashcroft N W and Mermin N D 1976 Solid State Physics (New York: Cornell University) p. 77
|
[35] |
Huang H, Xu H W, Youngblood K P, Wall D R, Stephens R B, Moreno K A, Nikroo A, Wu K J, Wang M and Hamza A V 2013 Fusion. Sci. Technol. 63 190
|
[36] |
Butrymowicz D B, Manning J R and Read M E 1975 J. Phys. Chem. Ref. Data 4 177
|
[37] |
Stackelberg M V and Quatram F 1934 Z. Physik. Chem. 27 50
|
[38] |
Lee C H, Lambrecht W R L and Segall B 1995 Phys. Rev. B 51 10392
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|