CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Real-space observation on standing configurations of phenylacetylene on Cu (111) by scanning probe microscopy |
Jing Qi(戚竞)1, Yi-Xuan Gao(高艺璇)1, Li Huang(黄立)1, Xiao Lin(林晓)1, Jia-Jia Dong(董佳家)2, Shi-Xuan Du(杜世萱)1,3, Hong-Jun Gao(高鸿钧)1,3 |
1 Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China;
2 Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China;
3 Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China |
|
|
Abstract The adsorption configurations of molecules adsorbed on substrates can significantly affect their physical and chemical properties. A standing configuration can be difficult to determine by traditional techniques, such as scanning tunneling microscopy (STM) due to the superposition of electronic states. In this paper, we report the real-space observation of the standing adsorption configuration of phenylacetylene on Cu (111) by non-contact atomic force microscopy (nc-AFM). Deposition of phenylacetylene at 25 K shows featureless bright spots in STM images. Using nc-AFM, the line features representing the C-H and C-C bonds in benzene rings are evident, which implies a standing adsorption configuration. Further density functional theory (DFT) calculations reveal multiple optimized adsorption configurations with phenylacetylene breaking its acetylenic bond and forming C-Cu bond(s) with the underlying copper atoms, and hence stand on the substrate. By comparing the nc-AFM simulations with the experimental observation, we identify the standing adsorption configuration of phenylacetylene on Cu (111). Our work demonstrates an application of combining nc-AFM measurements and DFT calculations to the study of standing molecules on substrates, which enriches our knowledge of the adsorption behaviors of small molecules on solid surfaces at low temperatures.
|
Received: 11 March 2019
Revised: 04 April 2019
Accepted manuscript online:
|
PACS:
|
68.43.-h
|
(Chemisorption/physisorption: adsorbates on surfaces)
|
|
68.43.Fg
|
(Adsorbate structure (binding sites, geometry))
|
|
07.79.-v
|
(Scanning probe microscopes and components)
|
|
31.15.E
|
(Density-functional theory)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0202300 and 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 61888102, 61474141, and 21661132006), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11604373), the Outstanding Youth Science Foundation, China (Grant No. 61622116), and the Strategic Priority Research Program of Chinese Academy of Sciences (CAS) (Grant Nos. XDB28000000 and XDB30000000). |
Corresponding Authors:
Li Huang, Shi-Xuan Du
E-mail: lhuang@iphy.ac.cn;sxdu@iphy.ac.cn
|
Cite this article:
Jing Qi(戚竞), Yi-Xuan Gao(高艺璇), Li Huang(黄立), Xiao Lin(林晓), Jia-Jia Dong(董佳家), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧) Real-space observation on standing configurations of phenylacetylene on Cu (111) by scanning probe microscopy 2019 Chin. Phys. B 28 066801
|
[1] |
Giancarlo L C, Fang H B, Rubin S M, Bront A A and Flynn G W 1998 J. Phys. Chem. B 102 10255
|
[2] |
Kirakosian A, Comstock M J, Cho J and Crommie M F 2005 Phys. Rev. B 71 113409
|
[3] |
Ramoino L, von Arx M, Schintke S, Baratoff A, Guntherodt H J and Jung T A 2006 Chem. Phys. Lett. 417 22
|
[4] |
Du S X, Gao H J, Seidel C, Tsetseris L, Ji W, Kopf H, Chi L F, Fuchs H, Pennycook S J and Pantelides S T 2006 Phys. Rev. Lett. 97 156105
|
[5] |
Zaera F 2002 Surf. Sci. 500 947
|
[6] |
Somorjai G A and Yang M C 2003 Top. Catal 24 61
|
[7] |
Deng X Y, Min B K, Guloy A and Friend C M 2005 J. Am. Chem. Soc. 127 9267
|
[8] |
Velic D, Hotzel A, Wolf M and Ertl G 1998 J. Chem. Phys. 109 9155
|
[9] |
Schroeder P G, France C B, Park J B and Parkinson B A 2002 J. Appl. Phys. 91 3010
|
[10] |
Huang W X and White J M 2004 J. Phys. Chem. B 108 5060
|
[11] |
Shi D, Ji W, Lin X, He X, Lian J, Gao L, Cai J, Lin H, Du S, Lin F, Seidel C, Chi L, Hofer W, Fuchs H and Gao H J 2006 Phys. Rev. Lett. 96 226101
|
[12] |
Li N, Huang Y, Du F, He X B, Lin X, Gao H J, Ma Y F, Li F F, Chen Y S and Eklund P C 2006 Nano Lett. 6 1141
|
[13] |
Gao L, Ji W, Hu Y B, Cheng Z H, Deng Z T, Liu Q, Jiang N, Lin X, Guo W, Du S X, Hofer W A, Xie X C and Gao H J 2007 Phys. Rev. Lett. 99 106402
|
[14] |
Gao L, Liu Q, Zhang Y Y, Jiang N, Zhang H G, Cheng Z H, Qiu W F, Du S X, Liu Y Q, Hofer W A and Gao H J 2008 Phys. Rev. Lett. 101 197209
|
[15] |
Zhang H G, Mao J H, Liu Q, Jiang N, Zhou H T, Guo H M, Shi D X and Gao H J 2010 Chin. Phys. B 19 018105
|
[16] |
Esat T, Friedrich N, Tautz F S and Temirov R 2018 Nature 558 573
|
[17] |
Schliwa M and Woehlke G 2003 Nature 422 759
|
[18] |
Hu Y B, Zhu Y, Gao H J and Guo H 2005 Phys. Rev. Lett. 95 156803
|
[19] |
Stöhr J 1992 NEXAFS Spectroscopy (Berlin, Heidelberg: Springer-Verlag)
|
[20] |
Hofmann S 2013 Auger- and X-Ray Photoelectron Spectroscopy in Materials Science (Berlin, Heidelberg: Springer-Verlag)
|
[21] |
Gimzewski J K and Joachim C 1999 Science 283 1683
|
[22] |
Larson A M, van Baren J, Kintigh J, Wang J, Tang J M, Zahl P, Miller G P and Pohl K 2018 J. Phys. Chem. C 122 11938
|
[23] |
Vernisse L, Guillermet O, Gourdon A and Coratger R 2018 Surf. Sci. 669 87
|
[24] |
Peng J B, Guo J, Hapala P, Cao D Y, Ma R Z, Cheng B W, Xu L M, Ondracek M, Jelinek P, Wang E G and Jiang Y 2018 Nat. Commun. 9 122
|
[25] |
Moreno C, Stetsovych O, Shimizu T K and Custance O 2015 Nano Lett. 15 2257
|
[26] |
Albrecht F, Pavlicek N, Herranz-Lancho C, Ruben M and Repp J 2015 J. Am. Chem. Soc. 137 7424
|
[27] |
Gross L, Mohn F, Moll N, Schuler B, Criado A, Guitian E, Pena D, Gourdon A and Meyer G 2012 Science 337 1326
|
[28] |
Gross L, Mohn F, Moll N, Liljeroth P and Meyer G 2009 Science 325 1110
|
[29] |
Pavlicek N, Fleury B, Neu M, Niedenfuhr J, Herranz-Lancho C, Ruben M and Repp J 2012 Phys. Rev. Lett. 108 086101
|
[30] |
Zhang J, Chen P C, Yuan B K, Ji W, Cheng Z H and Qiu X H 2013 Science 342 611
|
[31] |
Gross L, Mohn F, Moll N, Meyer G, Ebel R, Abdel-Mageed W M and Jaspars M 2010 Nat. Chem. 2 821
|
[32] |
Giessibl F J 2003 Rev. Mod. Phys. 75 949
|
[33] |
Iucci G, Carravetta V, Altamura P, Russo M V, Paolucci G, Goldoni A and Polzonetti G 2004 Chem. Phys. 302 43
|
[34] |
Sohn Y, Wei W and White J M 2007 J. Phys. Chem. C 111 5101
|
[35] |
Li Q, Han C B, Fuentes-Cabrera M, Terrones H, Sumpter B G, Lu W C, Bernholc J, Yi J Y, Gai Z, Baddorf A P, Maksymovych P and Pan M H 2012 ACS Nano 6 9267
|
[36] |
Bartels L, Meyer G and Rieder K H 1997 Appl. Phys. Lett. 71 213
|
[37] |
Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
|
[38] |
Blochl P E 1994 Phys. Rev. B 50 17953
|
[39] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[40] |
Hapala P, Kichin G, Wagner C, Tautz F S, Temirov R and Jelinek P 2014 Phys. Rev. B 90 085421
|
[41] |
Shiotari A, Odani T and Sugimoto Y 2018 Phys. Rev. Lett. 121 116101
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|