Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 038103    DOI: 10.1088/1674-1056/23/3/038103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Enhancing visible-light photocatalytic activity of α-Bi2O3 via non-metal N and S doping

Shang Jun (尚军), Gao Yuan (高远), Hao Wei-Chang (郝维昌), Jing Xi (井溪), Xin Hui-Ju (信会菊), Wang Liang (王亮), Feng Hai-Feng (冯海凤), Wang Tian-Min (王天民)
Center of Materials Physics and Chemistry and Department of Physics, Beihang University, Beijing 100191, China
Abstract  In recent years, some important research indicated that the visible-light activity of photocatalysts could be enhanced via incorporating p-block non-metal elements into the lattice. In this paper, we investigated the electronic structures of pure and different non-metal (C, N, S, F, Cl, and Br) doped α-Bi2O3 using first-principles calculations based on the density functional theory. The band structures, the electronic densities of states, and the effective masses of electrons and holes for doped α-Bi2O3 were obtained and analyzed. The N and S dopings narrowed the band gap and reduced the effective mass of the carriers, which are beneficial for the photocatalytic performance. The theoretical predication was further confirmed by the experimental results.
Keywords:  α-Bi2O3      first-principles calculation      non-metal doping      photocatalytic performance  
Received:  24 June 2013      Revised:  21 August 2013      Accepted manuscript online: 
PACS:  81.07.Bc (Nanocrystalline materials)  
  68.37.Og (High-resolution transmission electron microscopy (HRTEM))  
  84.60.Jt (Photoelectric conversion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51072012 and 51272015).
Corresponding Authors:  Hao Wei-Chang     E-mail:  whao@buaa.edu.cn

Cite this article: 

Shang Jun (尚军), Gao Yuan (高远), Hao Wei-Chang (郝维昌), Jing Xi (井溪), Xin Hui-Ju (信会菊), Wang Liang (王亮), Feng Hai-Feng (冯海凤), Wang Tian-Min (王天民) Enhancing visible-light photocatalytic activity of α-Bi2O3 via non-metal N and S doping 2014 Chin. Phys. B 23 038103

[1] Mills A, Davies R H and Worsley D 1993 Chem. Soc. Rev. 22 417
[2] Konstantinou I K and Albanis T A 2004 Appl. Catal. B Environ. 49 1
[3] Deng H Y, Hao W C, Xu H Z and Wang C Z 2012 J. Phys. Chem. C 116 1251
[4] Fujishima A and Honda K 1972 Nature 238 37
[5] Zou Z G, Ye J H, Sayama K and Arakawa H 2001 Nature 414 625
[6] Kudo A and Misek Y 2009 Chem. Soc. Rev. 38 253
[7] Chen X B and Mao S S 2007 Chem. Rev. 107 2891
[8] Li X Z and Li F B 2001 Environ. Sci. Technol. 35 2381
[9] Xu J J, Ao Y H, Fu D J and Yuan C W 2008 Appl. Surf. Sci. 255 2365
[10] Gao P, Wu J, Liu Q J and Zhou W F 2010 Chin. Phys. B 19 087103
[11] Li C Y, Wang J B and Wang Y Q 2012 Chin. Phys. B 21 098102
[12] Sathish M, Viswanathan B, Viswanath R P and Gopinath C S 2005 Chem. Mater. 17 6349
[13] Park J H, Kim S and BardZh A J 2006 Nano Lett. 6 24
[14] In S, Orlov A, Berg R, García F, Pedrosa-Jimenez S, Tikhov M S Wright D S and Lambert R M 2007 J. Am. Chem. Soc. 129 13790
[15] Chen X and Burda C 2008 J. Am. Chem. Soc. 130 5018
[16] Hitoki G, Takata T, Kondo J N, Hara M, Kobayashib H and Domen K 2002 Chem. Commun. 1698
[17] Kasahara A, Nukumizu K, Takata T, Kondo J N, Hara M, Kobayashi H and Domen K 2003 J. Phys. Chem. B 107 791
[18] Ishikawa A, Takata T, Kondo J N and Hara M 2002 J. Am. Chem. Soc. 124 13547
[19] Zhou J K, Lv L, Yu J, Li H L, Guo P Z, Sun H and Zhao X S 2008 J. Phys. Chem. C 112 5316
[20] Wei W, Dai Y and Huang B B 2009 J. Phys. Chem. C 113 5658
[21] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[22] Zou W, Hao W C, Xin X and Wang T M 2009 Chin. J. Inorg. Chem. 25 1971
[23] Imanaka N, Masui T, Imadzu H and Yasuda K 2011 Chem. Commun. 47 11032
[24] Wang Y, Wen Y Y, Ding H M and Shan Y K 2010 J. Mater. Sci. 45 1385
[25] Eberl J and Kisch H 2008 Photochem. Photobiol. Sci. 7 1400
[26] Carlsson J M, Hellsing B, Domingos H S and Bristowe P D 2002 Phys. Rev. B 65 205122
[27] Sammes N M, Tompsett G A, Nafe H and Aldinger F 1999 J. Eur. Ceram. Soc. 19 1801
[28] Kumari L, Lin J H and Ma Y R 2007 J. Phys.: Condens. Matter 19 406204
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[11] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[15] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
No Suggested Reading articles found!