ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Effect of optical pump on the dielectric properties of SrTiO3 in terahertz range |
Wu Liang (吴亮), Jiang Lin-Kun (蒋霖坤), Yuan Cai (袁偲), Ding Xin (丁欣), Yao Jian-Quan (姚建铨) |
College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University, Tianjin 300072, China
Key Laboratory of Opto-electronics Information Technology of Ministry of Education, Tianjin University, Tianjin 300072, China |
|
|
Abstract Tuning the dielectric permittivity spectra of strontium titanate (SrTiO3) single crystals in an external optical field is investigated at room temperature by means of terahertz time-domain spectroscopy. The application of the optical field leads to an appreciable tuning of the permittivity, reaching up to 2.8%, with the dielectric loss changing about 3%. The observed behavior is interpreted in terms of soft-mode hardening due to the anharmonic character of its potential. We also find that the change of the refractive index responds linearly to the applied light power. These findings are attributed to a linear electro-optical effect of the internal space charge field of the crystal.
|
Received: 06 September 2013
Revised: 18 September 2013
Accepted manuscript online:
|
PACS:
|
42.70.-a
|
(Optical materials)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61205096 and 61271066). |
Corresponding Authors:
Wu Liang
E-mail: wuliang@tju.edu.cn
|
Cite this article:
Wu Liang (吴亮), Jiang Lin-Kun (蒋霖坤), Yuan Cai (袁偲), Ding Xin (丁欣), Yao Jian-Quan (姚建铨) Effect of optical pump on the dielectric properties of SrTiO3 in terahertz range 2014 Chin. Phys. B 23 034212
|
[1] |
Kuzel, Kadlec P, Nemec F, Ott H, Hollmann R and Klein N E 2006 Appl. Phys. Lett. 88 102901
|
[2] |
Kadlec C, Kadlec F, Nemec H, Kuzel P, Schubert J and Panaitov G 2009 J. Phys.: Condens. Matter 21 115902
|
[3] |
Miyamaru F, Tanaka M and Hangyo M 2006 Phys. Rev. B 74 115117
|
[4] |
van Mechelen J L M, van der Marel D, Grimaldi C, Kuzmenko A B, Armitage N P, Reyren N, Hagemann H and Mazin I I 2008 Phys. Rev. Lett. 100 226403
|
[5] |
Rubano A, Braun L, Wolf M and Kampfrath T 2012 Appl. Phys. Lett. 101 081103
|
[6] |
Han J G, Wan F, Zhu Z Y and Zhang W L 2007 Appl. Phys. Lett. 90 031104
|
[7] |
Katayama I, Shimosato H, Rana S D, Kawayama I, Tonouchi M and Ashida M 2008 Appl. Phys. Lett. 93 132903
|
[8] |
Misra M, Kotani K, Kawayama I, Murakami H and Tonouchi M 2005 Appl. Phys. Lett. 87 182909
|
[9] |
Lee C H, Skoromets V, Biegalski D M, Lei S, Haislmaier R, Bernhagen M, Uecker R, Xi X, Gopalan V, Martí X, Kamba S, Kužel P and Schlom G D 2013 Appl. Phys. Lett. 102 082905
|
[10] |
Kadlec C, Skoromets V, Kadlec F, Němec H, Hlinka J, Schubert J, Panaitov G and Kužel P 2009 Phys. Rev. B 80 174116
|
[11] |
Katayama I, Aoki H, Takeda J, Shimosato H, Ashida M, Kinjo R, Kawayama I, Tonouchi M, Nagai M and Tanaka K 2012 Phys. Rev. Lett. 108 097401
|
[12] |
Kužel P and Kadlec F 2008 C. R. Physique 9 197
|
[13] |
Skoromets V, Kadlec F, Kadlec C, Něnec H, Rychetsky I, Panaitov G, Müller V, Fattakhova Rohlfing D, Moch P and Kužel P 2011 Phys. Rev. B 84 174121
|
[14] |
Singh R, Azad A, Jia Q X, Taylor A and Chen H T 2011 Opt. Lett. 36 1230
|
[15] |
Wang Y X, Wang C L, Zhong W L, Zhao M L, Li J C and Xue X Y 2004 Acta Phys. Sin. 53 214 (in Chinese)
|
[16] |
Wu L, Jiang L K, Sheng Q, Ding X and Yao J Q 2013 Opt. Lett. 38 2581
|
[17] |
Chen F S 1969 J. Appl. Phys. 40 3389
|
[18] |
Kareev M, Prosandeev S, Liu J, Gan C, Kareev A, Freeland J W, Xiao M and Chakhalian J 2008 Appl. Phys. Lett. 93 061909
|
[19] |
Zhang S, Zhou J F, Park Y S, Rho J, Singh R, Nam Su, Azad K A, Chen H T, Yin X B, Taylor A and Zhang X 2012 Nature Commun. 3 942
|
[20] |
Cao W, Singh R, Al Naib A I I, He M X, Taylor A and Zhang W L 2012 Opt. Lett. 37 3366
|
[21] |
Singh R, Xiong J, Azad A, Yang H, Trugman S, Jia Q X, Taylor A and Chen H T 2012 Nanophotonics 1 117
|
[22] |
Yang Y M, Huang R, Cong L Q, Zhu Z H, Gu J Q, Tian Z, Singh R, Zhang S, Han J G and Zhang W L 2011 Appl. Phys. Lett. 98 121114
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|