Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 034213    DOI: 10.1088/1674-1056/23/3/034213
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Subwavelength beam manipulation via multiple-metal slits coupled by disk-shaped nanocavity

Zheng Gai-Ge (郑改革), Xu Lin-Hua (徐林华), Pei Shi-Xin (裴世鑫), Chen Yun-Yun (陈云云)
School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
Abstract  A novel plasmonic structure consisting of three nano-scaled slits coupled by nano-disk-shaped nanocavities is proposed to produce subwavelength focusing and beam bending at optical frequencies. The incident light passes through the metal slits in the form of surface plasmon polaritons (SPPs) and then scatters into radiation fields. Numerical simulations using finite-difference time-domain (FDTD) method show that the transmitted fields through the design example can generate light focusing and deflection by altering the refractive index of the coupled nanocavity. The simulation results indicate that the focal spot is beyond the diffraction limit. Light impinges on the surface at an angle to the optical axis will add an extra planar phase front that interferes with the asymmetric phase front of the plasmonic lens, leading to a larger bending angle off the axial direction. The advantages of the proposed plasmonic lens are smaller device size and ease of fabrication. Such geometries offer the potential to be controlled by using nano-positioning systems for applications in dynamic beam shaping and scanning on the nanoscale.
Keywords:  beam manipulation      surface plasmon      subwavelength slits  
Received:  23 May 2013      Revised:  15 July 2013      Accepted manuscript online: 
PACS:  42.79.Fm (Reflectors, beam splitters, and deflectors)  
  42.25.-p (Wave optics)  
  78.68.+m (Optical properties of surfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61203211), the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No. 13KJB140006), and the Foundation for Outstanding Young Teachers of Nanjing University of Information Science & Technology, China (Grant No. 20110423).
Corresponding Authors:  Zheng Gai-Ge     E-mail:  eriot@126.com

Cite this article: 

Zheng Gai-Ge (郑改革), Xu Lin-Hua (徐林华), Pei Shi-Xin (裴世鑫), Chen Yun-Yun (陈云云) Subwavelength beam manipulation via multiple-metal slits coupled by disk-shaped nanocavity 2014 Chin. Phys. B 23 034213

[1] Zayats A V, Smolyaninovv I I and Maradudin A A 2005 Phys. Rep. 408 131
[2] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[3] Ozbay E 2006 Science 311 189
[4] Wu C N, Li H J, Peng X, Cao G T and Liu Z M 2013 Chin. Phys. B 22 057301
[5] Drezet A, Stepanov A L, Ditlbacher H, Hohenau A, Steinberger B, Aussenegg F R, Leitner A and Krenn J R 2005 Appl. Phys. Lett. 86 074104
[6] Chen F X, Wang L S and Xu W Y 2013 Chin. Phys. B 22 045202
[7] Griesing S, Englisch A and Uwe H 2008 Opt. Lett. 33 575
[8] Yin L, Vlasko-Vlasov V K, Pearson J, Hiller J M, Hua J, Welp U, Brown D E and Kimball C W 2005 Nano Lett. 5 1399
[9] López-Tejeira F, Rodrigo S G, Martín-Moreno L, García-Vidal F J, Devaux E, Ebbesen T W, Krenn J R, Radko I P, Bozhevolnyi S I, González M U, Weeber J C and Dereux A 2007 Nat. Phys. 3 324
[10] Sun Z J and Kim H K 2004 Appl. Phys. Lett. 85 642
[11] Shi H F, Wang C T, Du C L, Luo X G, Dong X C and Gao H T 2005 Opt. Express 13 6815
[12] Zhu Q F, Wang D Y, Zheng X H and Zhang Y 2011 Appl. Opt. 50 1879
[13] Yu Y T and Zappe H 2011 Opt. Express 19 9434
[14] Li H, Yan L S, Guo Z, Pan W, Wen K H, Li H Y and Luo X G 2012 IEEE Photon. J. 4 57
[15] Chen Q and Cumming D R 2010 Opt. Express 18 14788
[16] Shi H F, Du C L and Luo X G 2007 Appl. Phys. Lett. 91 093111
[17] Hao F H, Wang R and Wang J 2010 Plasmonics 5 45
[18] Hao F H, Wang R and Wang J 2010 Opt. Express 18 15741
[19] Zhao Y H, Lin S S, Nawaz A A, Kiraly B, Hao Q Z, Liu Y J and Huang T J 2010 Opt. Express 18 23458
[20] Liu Z, Durant S, Lee H, Xiong Y, Pikus Y, Sun C and Zhang X 2007 Opt. Lett. 32 629
[21] Kim S, Lim Y, Kim H, Park J and Lee B 2008 Appl. Phys. Lett. 92 013103
[22] Xu T, Du C L, Wang C T and Luo X G 2007 Appl. Phys. Lett. 92 201501
[23] Xu T, Wang C T, Du C L and Luo X G 2008 Opt. Express 16 4753
[24] Lereu A L, Passian A, Goudonnet J P, Thundat T and Ferrell T L 2005 Appl. Phys. Lett. 86 154101
[25] Dicken M J, Sweatlock L A, Pacifici D, Lezec H J, Bhattacharya K and Atwater H A 2008 Nano Lett. 8 4048
[26] Hsiao K S, Zheng Y B, Juluri B K, Huang T J 2008 Adv. Mater. 20 3528
[27] Pala R A, Shimizu K T, Melosh N A and Brongersma M L 2008 Nano Lett. 8 1506
[28] Wurtz G A and Zayats A V 2008 Laser Photon. Rev. 2 125
[29] Liu Y M, Bartal G, Genov D A and Zhang X 2007 Phys. Rev. Lett. 99 153901
[30] Wurtz G A, Pollard R and Zayats A V 2006 Phys. Rev. Lett. 97 057402
[31] Porto J A, Moreno L M and Garcia-Vidal F J 2004 Phys. Rev. B 70 081402
[32] Min C J, Wang P, Chen C C, Deng Y, Lu Y H, Ming H, Ning T Y, Zhou Y L and Yang G Z 2008 Opt. Lett. 33 869
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[5] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[6] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[9] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[10] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[11] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[12] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[13] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[14] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
[15] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
No Suggested Reading articles found!