ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Subwavelength beam manipulation via multiple-metal slits coupled by disk-shaped nanocavity |
Zheng Gai-Ge (郑改革), Xu Lin-Hua (徐林华), Pei Shi-Xin (裴世鑫), Chen Yun-Yun (陈云云) |
School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China |
|
|
Abstract A novel plasmonic structure consisting of three nano-scaled slits coupled by nano-disk-shaped nanocavities is proposed to produce subwavelength focusing and beam bending at optical frequencies. The incident light passes through the metal slits in the form of surface plasmon polaritons (SPPs) and then scatters into radiation fields. Numerical simulations using finite-difference time-domain (FDTD) method show that the transmitted fields through the design example can generate light focusing and deflection by altering the refractive index of the coupled nanocavity. The simulation results indicate that the focal spot is beyond the diffraction limit. Light impinges on the surface at an angle to the optical axis will add an extra planar phase front that interferes with the asymmetric phase front of the plasmonic lens, leading to a larger bending angle off the axial direction. The advantages of the proposed plasmonic lens are smaller device size and ease of fabrication. Such geometries offer the potential to be controlled by using nano-positioning systems for applications in dynamic beam shaping and scanning on the nanoscale.
|
Received: 23 May 2013
Revised: 15 July 2013
Accepted manuscript online:
|
PACS:
|
42.79.Fm
|
(Reflectors, beam splitters, and deflectors)
|
|
42.25.-p
|
(Wave optics)
|
|
78.68.+m
|
(Optical properties of surfaces)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61203211), the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No. 13KJB140006), and the Foundation for Outstanding Young Teachers of Nanjing University of Information Science & Technology, China (Grant No. 20110423). |
Corresponding Authors:
Zheng Gai-Ge
E-mail: eriot@126.com
|
Cite this article:
Zheng Gai-Ge (郑改革), Xu Lin-Hua (徐林华), Pei Shi-Xin (裴世鑫), Chen Yun-Yun (陈云云) Subwavelength beam manipulation via multiple-metal slits coupled by disk-shaped nanocavity 2014 Chin. Phys. B 23 034213
|
[1] |
Zayats A V, Smolyaninovv I I and Maradudin A A 2005 Phys. Rep. 408 131
|
[2] |
Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
|
[3] |
Ozbay E 2006 Science 311 189
|
[4] |
Wu C N, Li H J, Peng X, Cao G T and Liu Z M 2013 Chin. Phys. B 22 057301
|
[5] |
Drezet A, Stepanov A L, Ditlbacher H, Hohenau A, Steinberger B, Aussenegg F R, Leitner A and Krenn J R 2005 Appl. Phys. Lett. 86 074104
|
[6] |
Chen F X, Wang L S and Xu W Y 2013 Chin. Phys. B 22 045202
|
[7] |
Griesing S, Englisch A and Uwe H 2008 Opt. Lett. 33 575
|
[8] |
Yin L, Vlasko-Vlasov V K, Pearson J, Hiller J M, Hua J, Welp U, Brown D E and Kimball C W 2005 Nano Lett. 5 1399
|
[9] |
López-Tejeira F, Rodrigo S G, Martín-Moreno L, García-Vidal F J, Devaux E, Ebbesen T W, Krenn J R, Radko I P, Bozhevolnyi S I, González M U, Weeber J C and Dereux A 2007 Nat. Phys. 3 324
|
[10] |
Sun Z J and Kim H K 2004 Appl. Phys. Lett. 85 642
|
[11] |
Shi H F, Wang C T, Du C L, Luo X G, Dong X C and Gao H T 2005 Opt. Express 13 6815
|
[12] |
Zhu Q F, Wang D Y, Zheng X H and Zhang Y 2011 Appl. Opt. 50 1879
|
[13] |
Yu Y T and Zappe H 2011 Opt. Express 19 9434
|
[14] |
Li H, Yan L S, Guo Z, Pan W, Wen K H, Li H Y and Luo X G 2012 IEEE Photon. J. 4 57
|
[15] |
Chen Q and Cumming D R 2010 Opt. Express 18 14788
|
[16] |
Shi H F, Du C L and Luo X G 2007 Appl. Phys. Lett. 91 093111
|
[17] |
Hao F H, Wang R and Wang J 2010 Plasmonics 5 45
|
[18] |
Hao F H, Wang R and Wang J 2010 Opt. Express 18 15741
|
[19] |
Zhao Y H, Lin S S, Nawaz A A, Kiraly B, Hao Q Z, Liu Y J and Huang T J 2010 Opt. Express 18 23458
|
[20] |
Liu Z, Durant S, Lee H, Xiong Y, Pikus Y, Sun C and Zhang X 2007 Opt. Lett. 32 629
|
[21] |
Kim S, Lim Y, Kim H, Park J and Lee B 2008 Appl. Phys. Lett. 92 013103
|
[22] |
Xu T, Du C L, Wang C T and Luo X G 2007 Appl. Phys. Lett. 92 201501
|
[23] |
Xu T, Wang C T, Du C L and Luo X G 2008 Opt. Express 16 4753
|
[24] |
Lereu A L, Passian A, Goudonnet J P, Thundat T and Ferrell T L 2005 Appl. Phys. Lett. 86 154101
|
[25] |
Dicken M J, Sweatlock L A, Pacifici D, Lezec H J, Bhattacharya K and Atwater H A 2008 Nano Lett. 8 4048
|
[26] |
Hsiao K S, Zheng Y B, Juluri B K, Huang T J 2008 Adv. Mater. 20 3528
|
[27] |
Pala R A, Shimizu K T, Melosh N A and Brongersma M L 2008 Nano Lett. 8 1506
|
[28] |
Wurtz G A and Zayats A V 2008 Laser Photon. Rev. 2 125
|
[29] |
Liu Y M, Bartal G, Genov D A and Zhang X 2007 Phys. Rev. Lett. 99 153901
|
[30] |
Wurtz G A, Pollard R and Zayats A V 2006 Phys. Rev. Lett. 97 057402
|
[31] |
Porto J A, Moreno L M and Garcia-Vidal F J 2004 Phys. Rev. B 70 081402
|
[32] |
Min C J, Wang P, Chen C C, Deng Y, Lu Y H, Ming H, Ning T Y, Zhou Y L and Yang G Z 2008 Opt. Lett. 33 869
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|