Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 020701    DOI: 10.1088/1674-1056/23/2/020701
GENERAL Prev   Next  

A unified drain current 1/f noise model for GaN-based high electron mobility transistors

Liu Yu-An (刘宇安), Zhuang Yi-Qi (庄奕琪), Ma Xiao-Hua (马晓华), Du Ming (杜鸣), Bao Jun-Lin (包军林), Li Cong (李聪)
School of Microelectronics, Xidian University, Xi’an 710071, China
Abstract  In this work, we present a theoretical and experimental study on the drain current 1/f noise in the AlGaN/GaN high electron mobility transistor (HEMT). Based on both mobility fluctuation and carrier number fluctuation in a two-dimensional electron gas (2DEG) channel of AlGaN/GaN HEMT, a unified drain current 1/f noise model containing a piezoelectric polarization effect and hot carrier effect is built. The drain current 1/f noise induced by the piezoelectric polarization effect is distinguished from that induced by the hot carrier effect through experiments and simulations. The simulation results are in good agreement with the experimental results. Experiments show that after hot carrier injection, the drain current 1/f noise increases four orders of magnitude and the electrical parameter degradation Δgm/gm reaches 54.9%. The drain current 1/f noise degradation induced by the piezoelectric effect reaches one order of magnitude; the electrical parameter degradation Δgm/gm is 11.8%. This indicates that drain current 1/f noise of the GaN-based HEMT device is sensitive to the hot carrier effect and piezoelectric effect. This study provides a useful reliability characterization tool for the AlGaN/GaN HEMTs.
Keywords:  1/f noise      hot carrier      piezoelectric effects      AlGaN/GaN      HEMT  
Received:  14 January 2013      Revised:  13 May 2013      Accepted manuscript online: 
PACS:  07.50.Hp (Electrical noise and shielding equipment)  
  85.40.Hp (Lithography, masks and pattern transfer)  
  71.55.Eq (III-V semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076101, 61204092, 61334002, and JJ0500102508).
Corresponding Authors:  Zhuang Yi-Qi     E-mail:  yqzhuang@xidian.edu.cn
About author:  07.50.Hp; 85.40.Hp; 71.55.Eq

Cite this article: 

Liu Yu-An (刘宇安), Zhuang Yi-Qi (庄奕琪), Ma Xiao-Hua (马晓华), Du Ming (杜鸣), Bao Jun-Lin (包军林), Li Cong (李聪) A unified drain current 1/f noise model for GaN-based high electron mobility transistors 2014 Chin. Phys. B 23 020701

[1] Labat N, Malbert N, Maneux C, Curutchet A and Grandchamp B 2011 21st International Conference on Noise and Fluctuations, 12–16 June, 2011, Toronto, Canada, p. 458
[2] Lü Y J, Lin Z J and Yu Y X, Meng L G, Cao Z F, Luan C B and Wang Z G 2012 Chin. Phys. B 21 097104
[3] Tian W, Yan W Y, Xiong H, Dai J N, Fang Y Y, Wu Z H, Yu C H and Chen C Q 2013 Chin. Phys. B 22 057302
[4] Meneghesso G, Verzellesi V, Danesin F, Rampazzo F, Zanon F, Tazzoli A, Meneghini M and Zanoni E 2008 IEEE Transactions on Device and Materials Reliability 8 332
[5] Balandin A, Cai S, Li R, Wang K L, Rao V R and Viswanathan C R 1998 IEEE Electron Dev. Lett. 19 475
[6] Vertiatchikh A V and Eastman L F 2003 IEEE Electron Dev. Lett. 24 535
[7] Rao H and Bosman G 2009 J. Appl. Phys. 106 1037121
[8] Vitusevich S A, Danylyuk S V and Klein N 2002 Appl. Phys. Lett. 80 2126
[9] Manouchehri F, Valizadeh P and Kabir M Z 2011 21st International Conference on Noise and Fluctuations, 12–16 June, 2011 Toronto, Canada, p. 220
[10] Bao J L, Zhuang Y Q and Du L 2005 Acta Phys. Sin. 54 2118 (in Chinese)
[11] Vitusevich S A, Danylyuk S V and Kurakin A M 2006 J. Appl. Phys. 99 0737061
[12] Fang P, Hung K K, Ko P K and Hu C 1990 Symposium on VLSl Technology, 4–7 June, 1990, Honolulu, USA, p. 37
[13] Alamo J A and Joh J 2009 Microelectronics Reliability 49 1200
[14] Rao H and Bosman G 2010 J. Appl. Phys. 108 0537071
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[3] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[4] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[5] Enhancement of fMAX of InP-based HEMTs by double-recessed offset gate process
Bo Wang(王博), Peng Ding(丁芃), Rui-Ze Feng(封瑞泽), Shu-Rui Cao(曹书睿), Hao-Miao Wei(魏浩淼), Tong Liu(刘桐), Xiao-Yu Liu(刘晓宇), Hai-Ou Li(李海鸥), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058506.
[6] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[7] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[8] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[9] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[10] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[11] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[12] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[13] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[14] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[15] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
No Suggested Reading articles found!