INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Performance improvement of GaN-based light-emitting diode with a p-InAlGaN hole injection layer |
Yu Xiao-Peng (喻晓鹏)a b, Fan Guang-Han (范广涵)a b, Ding Bin-Bin (丁彬彬)a b, Xiong Jian-Yong (熊建勇)a b, Xiao Yao (肖瑶)a b, Zhang Tao (张涛)a b, Zheng Shu-Wen (郑树文)a b |
a Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631, China; b Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China |
|
|
Abstract The characteristics of a blue light-emitting diode (LED) with a p-InAlGaN hole injection layer (HIL) is analyzed numerically. The simulation results indicate that the newly designed structure presents superior optical and electrical performance such as an increase in light output power, a reduction in current leakage and alleviation of efficiency droop. These improvements can be attributed to the p-InAlGaN serving as hole injection layers, which can alleviate the band bending induced by the polarization field, thereby improving both the hole injection efficiency and the electron blocking efficiency.
|
Received: 19 July 2013
Revised: 17 September 2013
Accepted manuscript online:
|
PACS:
|
85.60.Jb
|
(Light-emitting devices)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
87.15.A-
|
(Theory, modeling, and computer simulation)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61176043) and the Special Funds for Strategic and Emerging Industries Projects of Guangdong Province, China (Grant Nos. 2010A081002005, 2011A081301003, and 2012A080304016). |
Corresponding Authors:
Zhang Tao, Zheng Shu-Wen
E-mail: hszhangtao@163.com;LED@scnu.edu.cn
|
About author: 85.60.Jb; 73.61.Ey; 87.15.A-; 78.60.Fi |
Cite this article:
Yu Xiao-Peng (喻晓鹏), Fan Guang-Han (范广涵), Ding Bin-Bin (丁彬彬), Xiong Jian-Yong (熊建勇), Xiao Yao (肖瑶), Zhang Tao (张涛), Zheng Shu-Wen (郑树文) Performance improvement of GaN-based light-emitting diode with a p-InAlGaN hole injection layer 2014 Chin. Phys. B 23 028502
|
[1] |
Muramoto Y, Kimura M, Dempo A, Nouda S, Fukawa Y and Sakai S 2011 J. Soc. Inf. Disp. 19 907
|
[2] |
Pimputkar S, Speck J, DenBaars S P and Nakamura S 2009 Nat. Photonics 3 180
|
[3] |
Horiuchi N 2010 Nat. Photonics 4 738
|
[4] |
Chen Y X, Shen G D, Guo W L, Xu C and Li J J 2011 Chin. Phys. B 20 017204
|
[5] |
Wang Z J, Li P L, Yang Z P, Guo Q L and Li X 2010 Chin. Phys. B 19 017801
|
[6] |
Mukai T, Yamada M and Nakamura S 1999 Jpn. J. Appl. Phys. 38 3976
|
[7] |
Sun W, Shatalov M, Deng J, Hu X, Yang J, Lunev A, Bilenko Y, Shur M and Gaska R 2010 Appl. Phys. Lett. 96 061102
|
[8] |
Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
|
[9] |
Schubert M F, Xu J, Kim J K, Schubert E F, Kim M H, Yoon S, Lee S M, Sone C, Sakong T and Park Y 2008 Appl. Phys. Lett. 93 041102
|
[10] |
Kuo Y K, Tsai M C and Yen S H 2009 Opt. Commun. 282 4252
|
[11] |
Tao Y B, Chen Z Z, Zhang F F, Jia C Y, Qi S L, Yu T J, Kang X N, Yang Z J, You L P, Yu D P and Zhang G Y 2010 J. Appl. Phys. 107 103529
|
[12] |
Chang S P, Lu T C, Zhuo L F, Jang C Y, Lin D W, Yang H C, Kuo H C and Wang S C 2010 J. Electrochem. Soc. 157 H501
|
[13] |
Ling S C, Lu T C, Chang S P, Chen J R, Kuo H C and Wang S C 2010 Appl. Phys. Lett. 96 231101
|
[14] |
Zhang Y Y and Yin Y A 2011 Appl. Phys. Lett. 99 221103
|
[15] |
Chen J, Fan G H and Zhang Y Y 2013 Chin. Phys. B 22 018504
|
[16] |
Kuo Y K, Chang J Y and Tsai M C 2010 Opt. Lett. 35 3285
|
[17] |
Li H J, Kang J J, Li P P, Ma J, Wang H, Liang M, Li Z C, Li J, Yi X Y and Wang G H 2013 Appl. Phys. Lett. 102 011105
|
[18] |
Xian Y L, Huang S J, Zheng Z Y, Fan B F, Chen Z M, Wu Z S, Wang G, Zhang B J and Jiang H 2013 J. Display Technol. 9 255
|
[19] |
Wu L J, Li S T, Liu C, Wang H L, Lu T P, Zhang K, Xiao G W, Zhou Y G, Zheng S W, Yin Y A and Yang X D 2012 Chin. Phys. B 21 068506
|
[20] |
Jia C Y, Zhong C T, Yu T J, Wang Z, Tong Y Z and Zhang G Y 2012 Semicond. Sci. Technol. 27 065008
|
[21] |
Lu T P, Li S T, Liu C, Zhang K, Xu Y Q, Tong J H, Wu L J, Wang H L, Yang X D, Yin Y A, Xiao G W and Zhou Y G 2012 Appl. Phys. Lett. 100 141106
|
[22] |
Liu C, Lu T P, Wu L J, Wang H L, Yin Y A, Xiao G W, Zhou Y G and Li S T 2012 IEEE Photon. Technol. Lett. 24 1239
|
[23] |
Liu C, Ren Z W, Chen X, Zhao B J, Wang X F, Yin Y A and Li S T 2013 Chin. Phys. B 22 058502
|
[24] |
Shur M S, Bykhovski A D, Gaska R, Wang J W, Simin G and Khan M A 2000 Appl. Phys. Lett. 76 3061
|
[25] |
Chitnis A, Pachipulusu R, Mandavilli V, Shatalov M, Kuokstis E, Zhang J P, Adivarahan V, Wu S, Simin G and Khan M A 2002 Appl. Phys. Lett. 81 2938
|
[26] |
Zhang N, Liu Z, Li J M and Wang J X 2013 Patent 103137807A [2013-02-22]
|
[27] |
Vurgaftman I and Meyer J R 2003 J. Appl. Phys. 94 3675
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|