Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 028501    DOI: 10.1088/1674-1056/23/2/028501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Impact of multiplexed reading scheme on nanocrossbar memristor memory’s scalability

Zhu Xuan (朱玄)a b, Tang Yu-Hua (唐玉华)a b, Wu Chun-Qing (吴纯青)b, Wu Jun-Jie (吴俊杰)a b, Yi Xun (易勋)a b
a State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, China;
b School of Computer, National University of Defense Technology, Changsha 410073, China
Abstract  Nanocrossbar is a potential memory architecture to integrate memristor to achieve large scale and high density memory. However, based on the currently widely-adopted parallel reading scheme, scalability of the nanocrossbar memory is limited, since the overhead of the reading circuits is in proportion with the size of the nanocrossbar component. In this paper, a multiplexed reading scheme is adopted as the foundation of the discussion. Through HSPICE simulation, we reanalyze scalability of the nanocrossbar memristor memory by investigating the impact of various circuit parameters on the output voltage swing as the memory scales to larger size. We find that multiplexed reading maintains sufficient noise margin in large size nanocrossbar memristor memory. In order to improve the scalability of the memory, memristors with nonlinear I–V characteristics and high LRS (low resistive state) resistance should be adopted.
Keywords:  nanocrossbar      memristor      multiplexing      reading circuit      voltage swing  
Received:  04 June 2013      Revised:  27 June 2013      Accepted manuscript online: 
PACS:  85.40.Bh (Computer-aided design of microcircuits; layout and modeling)  
  07.50.Ek (Circuits and circuit components)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61003082).
Corresponding Authors:  Wu Chun-Qing     E-mail:  wuchunqing@nudt.edu.cn
About author:  85.40.Bh; 07.50.Ek

Cite this article: 

Zhu Xuan (朱玄), Tang Yu-Hua (唐玉华), Wu Chun-Qing (吴纯青), Wu Jun-Jie (吴俊杰), Yi Xun (易勋) Impact of multiplexed reading scheme on nanocrossbar memristor memory’s scalability 2014 Chin. Phys. B 23 028501

[1] Yohwan K 2009 Proceedings of the 2009 IEEE International Memory Workshop, May 10–14, 2009, Monterey, California, USA, p. 1
[2] Strukov D, Snider G, Stewart D and Williams R 2008 Nature 453 80
[3] Vontobel P O, Robinett W, Kuekes P J, Stewart D R, Straznicky J and Williams R S 2009 Nanotechnology 20 425204
[4] Linn E, Rosezin R, Kugeler C and Waser R 2010 Nat. Mater. 9 403
[5] Kim K, Gaba S, Wheeler D, Cruz-Albrecht J M, Hussain T, Srinivasa N and Lu W 2012 Nano Lett. 12 389
[6] Fang X D, Tang Y H and Wu J J 2012 Chin. Phys. B 21 098901
[7] Zhou J and Huang D 2012 Chin. Phys. B 21 048401
[8] Huang D, Wu J J and Tang Y H 2013 Chin. Phys. B 22 038201
[9] Chen Y, Jung G Y, Ohlberg D A A, Li X, Stewart D R, Jeppesen J O, Nielsen K A, Stoddart J F and Williams R S 2003 Nanotechnology 14 462
[10] Csaba G and Lugli P 2009 IEEE Trans. Nanotechnol. 8 369
[11] Liang J and Wong H S P 2010 IEEE Trans. Electron Dev. 57 2531
[12] Qureshi M S, Pickett M, Miao F and Strachan J P 2011 Proceedings of the IEEE International Symposium on Circuits and Systems, May 15–18, 2011, Rio de Janeiro, Brazil, p. 2954
[13] Yakopcic C, Taha T M, Subramanyam G, Pino R E and Roger S 2011 IEEE. Electron. Dev. Lett. 32 1436
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[4] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[5] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[6] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[7] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[8] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[9] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[10] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[11] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[12] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[13] Reconstruction resolution enhancement of EPISM based holographic stereogram with hogel spatial multiplexing
Yunpeng Liu(刘云鹏), Teng Zhang(张腾), Jian Su(苏健), Tao Jing(荆涛), Min Lin(蔺敏), Pei Li(李沛), and Xingpeng Yan(闫兴鹏). Chin. Phys. B, 2022, 31(4): 044201.
[14] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[15] High-performance and fabrication friendly polarization demultiplexer
Huan Guan(关欢), Yang Liu(刘阳), and Zhiyong Li (李智勇). Chin. Phys. B, 2022, 31(3): 034203.
No Suggested Reading articles found!