INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Influences of polarization effect and p-region doping concentration on the photocurrent response of solar-blind p–i–n avalanche photodiodes |
Li Xiao-Jing (李晓静)a, Zhao De-Gang (赵德刚)a, Jiang De-Sheng (江德生)a, Liu Zong-Shun (刘宗顺)a, Chen Ping (陈平)a, Wu Liang-Liang (吴亮亮)a, Li Liang (李亮)a, Le Ling-Cong (乐伶聪)a, Yang Jing (杨静)a, He Xiao-Guang (何晓光)a, Wang Hui (王辉)b, Zhu Jian-Jun (朱建军)b, Zhang Shu-Ming (张书明)b, Zhang Bao-Shun (张宝顺)b, Yang Hui (杨辉)a b |
a State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; b Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China |
|
|
Abstract The influences of polarization and p-region doping concentration on the photocurrent response of Al0.4Ga0.6N/Al0.4Ga0.6N/Al0.65Ga0.35N p–i–n avalanche photodetector are studied in a wide range of reverse bias voltages. The simulation results indicate that the photocurrent under high inverse bias voltage decreases with the increase of polarization effect, but increases rapidly with the increase of effective doping concentration in p-type region. These phenomena are analyzed based on the calculations of the intensity and distribution of the electric field. A high p-region doping concentration in the p–i–n avalanche photodetector is shown to be important for the efficient compensation for the detrimental polarization-induced electrostatic field.
|
Received: 20 March 2013
Revised: 03 May 2013
Accepted manuscript online:
|
PACS:
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
77.22.Ej
|
(Polarization and depolarization)
|
|
74.72.Gh
|
(Hole-doped)
|
|
Fund: Project supported by the National Science Fund for Distinguished Young Scholars, China (Grant No. 60925017), the National Natural Science Foundation of China (Grant Nos. 10990100, 60836003, 60976045, and 61176126), and the Tsinghua National Laboratory for Information Science and Technology Cross-discipline Foundation. |
Corresponding Authors:
Zhao De-Gang
E-mail: dgzhao@red.semi.ac.cn
|
About author: 85.60.Gz; 77.22.Ej; 74.72.Gh |
Cite this article:
Li Xiao-Jing (李晓静), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Liu Zong-Shun (刘宗顺), Chen Ping (陈平), Wu Liang-Liang (吴亮亮), Li Liang (李亮), Le Ling-Cong (乐伶聪), Yang Jing (杨静), He Xiao-Guang (何晓光), Wang Hui (王辉), Zhu Jian-Jun (朱建军), Zhang Shu-Ming (张书明), Zhang Bao-Shun (张宝顺), Yang Hui (杨辉) Influences of polarization effect and p-region doping concentration on the photocurrent response of solar-blind p–i–n avalanche photodiodes 2014 Chin. Phys. B 23 028503
|
[1] |
Yasan A, McClintock R, Mayes K, Shiell D, Gautero L, Darvish S R, Kung P and Razeghi M 2003 Appl. Phys. Lett. 83 4701
|
[2] |
Mayes K, Yasan A, McClintock R, Shiell D, Darvish S R, Kung P and Razeghi M 2004 Appl. Phys. Lett. 84 1046
|
[3] |
Kono S, Oki T, Miyajima T, Ikeda M and Yokoyama H 2008 Appl. Phys. Lett. 93 131113
|
[4] |
He Z, Kang Y, Tang Y W, Li X and Fang J X 2006 Chin. Phys. 15 1325
|
[5] |
Tan W S, Houston P A, Parbrook P J, Wood D A, Hill G and Whitehouse C R 2002 Appl. Phys. Lett. 80 3207
|
[6] |
Li G, Cao Y, Xing H G and Jena D 2010 Appl. Phys. Lett. 97 222110
|
[7] |
Razeghi M 2002 Proce. IEEE 90 1006
|
[8] |
Butun B, Tut T, Ulker E, Yelboga T and Ozbay E 2008 Appl. Phys. Lett. 92 033507
|
[9] |
Cicek E, Vashaei Z, McClintock R, Bayram C and Razeghi M 2010 Appl. Phys. Lett. 96 261107
|
[10] |
Bernardini F and Fiorentini V 2001 Phys. Rev. B 64 085207
|
[11] |
Wang G S, Lu H, Xie F, Chen D J, Ren F F, Zhang R and Zheng Y K 2012 Chin. Phys. Lett. 29 097302
|
[12] |
Pau J L, McClintock R, Minder K, Bayram C, Kung P and Razeghi M 2007 Appl. Phys. Lett 91 041104
|
[13] |
McClintock R, Pau J L, Minder K, Bayram C, Kung P and Razeghi M 2007 Appl. Phys. Lett. 90 141112
|
[14] |
Chang K H, Sheu J K, Lee M L, Tu S J, Yang C C, Kuo H S, Yang J H and Lai W C 2010 Appl. Phys. Lett. 97 013502
|
[15] |
Farahmand M and Brennan K F 1999 IEEE Trans. Electron Dev. 46 1319
|
[16] |
Oğuzman I H, Bellotti E, Brennan K F, Kolník J N, Wang R and Ruden P P 1997 J. Appl. Phys. 81 7827
|
[17] |
Zhou J J 2004 J. Appl. Phys. 95 5925
|
[18] |
Kuo Y K, Chang J Y and Shih Y H 2012 IEEE J. Quantum Electron. 48 367
|
[19] |
Chynoweth A 1958 Phys. Rev. 109 1537
|
[20] |
Bernardini F and Fiorentini V 1997 Phys. Rev. B 56 10024
|
[21] |
Liu H X, Gao B, Zhuo Q Q and Wang Y H 2012 Acta Phys. Sin. 61 057802 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|