INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
First-principles investigation of chemical modification on two-dimensional iron–phthalocyanine sheet |
Wang Hong-Bo (王洪博), Su Yan (苏燕), Chen Gang (陈刚) |
Department of Physics, University of Jinan, Jinan 250022, China |
|
|
Abstract Successful synthesis of single iron–phthalocyanie (FePc) framework layer on substrate and its transferrable properties open the door for decorating the separately distributed transition metals for exploring the diverse properties. We have studied the effects of chemical modification on two-dimensional FePc organometallic framework with density functional theory. For simplicity, the non-metal atoms with variant valence electrons are used as prototypes to estimate the effects from chemical modifications with different functional groups. The thermo-stabilities of the non-metal atom decorated complex sheet materials have been estimated by the first-principles constant energy molecular dynamic simulations. Upon the non-metal atom adsorption, the magnetic moment could be changed from 2 μB to 0, 1, 2, and 3 μB per unit cell for the case of tetra-, penta-, hexa-, and hepta-valent non-metal modifications, respectively, showing interesting promise to tailor its magnetic properties for potential applications.
|
Received: 08 May 2013
Revised: 20 May 2013
Accepted manuscript online:
|
PACS:
|
81.05.ue
|
(Graphene)
|
|
81.05.Rm
|
(Porous materials; granular materials)
|
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
Fund: Project supported by the Research Fund of Taishan Scholar, China (Grant No. TSHW20101004), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2010AM027), and the National Natural Science Foundation of China (Grant No. 11074100). |
Corresponding Authors:
Su Yan
E-mail: ss_suy@ujn.edu.cn
|
Cite this article:
Wang Hong-Bo (王洪博), Su Yan (苏燕), Chen Gang (陈刚) First-principles investigation of chemical modification on two-dimensional iron–phthalocyanine sheet 2014 Chin. Phys. B 23 018103
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[3] |
Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[4] |
Zhang J, Zhang G Y and Shi D X 2013 Chin. Phys. B 22 057701
|
[5] |
Sluiter M H F and Kawazoe Y 2003 Phys. Rev. B 68 085410
|
[6] |
Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K and Novoselov K S 2009 Science 323 610
|
[7] |
Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y and Jena P 2009 Nano Lett. 9 3867
|
[8] |
Chen W, Li Y, Yu G, Li C Z, Zhang S B, Zhou Z and Chen Z 2010 J. Am. Chem. Soc. 132 1699
|
[9] |
Lu D, Yang Y R, Xiao Y and Zhang X Y 2011 Chin. Phys. B 20 118101
|
[10] |
Bai J, Zhong X, Jiang S, Huang Y and Duan X 2010 Nat. Nanotechnol. 5 190
|
[11] |
Singh A K, Penev E S and Yakbson B I 2010 ACS Nano 4 3510
|
[12] |
Lin X, Wang H L, Pan H and Xu H Z 2011 Chin. Phys. B 20 047302
|
[13] |
Dai X Q, Tang Y N, Dai Y W, Li Y H, Zhao J H, Zhao B and Yang X 2011 Chin. Phys. B 20 056801
|
[14] |
Li Q X, Yang J L, Yuan L F, Hou J G and Zhu Q S 2001 Chin. Phys. Lett. 18 1234
|
[15] |
Abel M, Clair S, Ourdjini O, Mossoyan M and Porte L 2011 J. Am. Chem. Soc. 133 1203
|
[16] |
Zhou J and Sun Q 2011 J. Am. Chem. Soc. 133 15113
|
[17] |
Li L H, Li J Q and Wu L M 2012 J. Phys. Chem. C 116 9235
|
[18] |
Kress G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[19] |
Kress G and Joubert D 1999 Phys. Rev. B 59 1758
|
[20] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[21] |
Okabayashi J, Kimura A, Rader O, Mizokawa T, Fujimori A, Hayashi T and Tanaka M 1998 Phys. Rev. B 58 R4211
|
[22] |
Sato K, Bergqvist L, Kudrnovský J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H and Zeller R 2010 Rev. Mod. Phys. 82 1633
|
[23] |
Sato K, Dederichs P H, Katayama-Yoshida H and Kudrnovský J 2004 J. Phys.: Condens. Matter. 16 5491
|
[24] |
Bernien M, Miguel J, Weis C, Ali Md E, Kurde J, Krumme B, Panchmatia P M, Sanyal B, Piantek M, Srivastava P, Baberschke K, Oppeneer P M, Eriksson O, Kuch W and Wende H 2009 Phys. Rev. Lett. 102 047202
|
[25] |
Shick A B, Kudrnovsky J and Drchal V 2004 Phys. Rev. B 69 125207
|
[26] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[27] |
Zheng L M, Gao S, Song H H, Decurtins S, Jacobson A J and Xin X Q 2002 Chem. Mater. 14 3143
|
[28] |
Zhang Y Q and Zhang Z D 2003 Phys. Rev. B 67 132405
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|