Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 014205    DOI: 10.1088/1674-1056/23/1/014205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Controllable beating signal using stored light pulse

Wang Lei (王磊)a, Yang Qing-Yu (杨庆禹)a b, Wang Xiao-Xiao (王潇潇)a, Luo Meng-Xi (罗梦希)a, Fan Yun-Fei (范云飞)a, Kang Zhi-Hui (康智慧)a, Dai Tian-Yuan (戴天缘)a, Bi Sheng (毕升)a, Wang Hai-Hua (王海华)a c, Wu Jin-Hui (吴金辉)a, Gao Jin-Yue (高锦岳)a
a College of Physics, Jilin University, Changchun 130012, China;
b Department of Training, Aviation University of Air Force, Changchun 130000, China;
c State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
Abstract  We experimentally study the controllable generation of a beating signal using stored light pulses based on electromagnetically induced transparency (EIT) in a solid medium. The beating signal relies on an asymmetric procedure of light storage and retrieval. After storing the probe pulse into the spin coherence under the EIT condition, two-color control fields with opposite detunings instead of the initial control field are used to scatter the stored spin coherence. The controllable beating signal is generated due to alternative constructive and destructive interferences in the retrieved signal intensities. The beating of the two-color control fields is mapped into the beating of weak probe fields by using atomic spin coherence. This beating signal will be important in precise atomic spectroscopy and fast quantum limited measurements.
Keywords:  beating signal      slow light      light storage      electromagnetically induced transparency  
Received:  14 March 2013      Revised:  07 May 2013      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB921603), the National Natural Science Foundation of China (Grant Nos. 11374126, 10904048, 11074097, 11004079, 11004080, and 11247201), the China Postdoctoral Science Foundation (Grant Nos. 2011M500924 and 2013T60317), and the National Fund for Fostering Talents of Basic Science (Grant No. J1103202).
Corresponding Authors:  Wang Hai-Hua, Wu Jin-Hui     E-mail:  haihua@jlu.edu.cn;jhwu@jlu.edu.cn

Cite this article: 

Wang Lei (王磊), Yang Qing-Yu (杨庆禹), Wang Xiao-Xiao (王潇潇), Luo Meng-Xi (罗梦希), Fan Yun-Fei (范云飞), Kang Zhi-Hui (康智慧), Dai Tian-Yuan (戴天缘), Bi Sheng (毕升), Wang Hai-Hua (王海华), Wu Jin-Hui (吴金辉), Gao Jin-Yue (高锦岳) Controllable beating signal using stored light pulse 2014 Chin. Phys. B 23 014205

[1] Fleischhauer M and Imamoglu A 2005 Rev. Mod. Phys. 77 633
[2] Fleischhauer M and Lukin M D 2000 Phys. Rev. Lett. 84 5094
[3] Liu C, Dutton Z, Behroozi C H and Hau L V 2001 Nature 409 490
[4] Phillips D F, Fleischhauer A, Mair A, Walsworth R L and Lukin M D 2001 Phys. Rev. Lett. 86 783
[5] Zibrov A S, Matsko A B, Kocharovskaya O, Rostovtsev Y V, Welch G R and Scully M O 2002 Phys. Rev. Lett. 88 103601
[6] Appel J, Marzlin K P and Lvovsky A I 2006 Phys. Rev. A 73 013804
[7] Appel J, Figueroa E, Korystov D, Lobino M and Lvovsky A I 2008 Phys. Rev. Lett. 100 093602
[8] Choi K S, Deng H, Laurat J and Kimble H J 2008 Nature 452 67
[9] MacRae A, Campbell G and Lvovsky A I 2008 Opt. Lett. 33 2659
[10] Wang H H, Fan Y F, Wang R, Wang L, Du D M, Kang Z H, Jiang Y, Wu J H and Gao J Y 2009 Opt. Lett. 34 2596
[11] Camacho R M, Vudyasetu R K and Howell J C 2009 Nature Photon. 103
[12] Yang S H, Wang D and Gao J Y 1999 Chin. Phys. 20 443
[13] Gao J Y and Wu J H 2002 Chin. Phys. 11 572
[14] Fan Y F, Wang H H, Wang R, Zhang X J, Kang Z H, Wu J H, Zhang H Z and Gao J Y 2012 Chin. Phys. B 21 024205
[15] Yang H, Yan D, Zhang M, Fang B, Zhang Y and Wu J H 2012 Chin. Phys. B 21 114207
[16] Mari A, Hager J, Phillips D F, Walsworth R L and Lukin M D 2002 Phys. Rev. A 65 031802
[17] Chen Y F, Liu Y C, Tsai Z H, Wang S H and Yu I A 2005 Phys. Rev. A 72 033812
[18] Karpa L, Vewinger F and Weitz M 2008 Phys. Rev. Lett. 101 170406
[19] Karpa L, Nikoghosyan G, Vewinger F, Fleischhauer M and Weitz M 2009 Phys. Rev. Lett. 103 093601
[20] Heinze G, Rudolf A, Beil F and Halfmann T 2010 Phys. Rev. A 81 011401
[21] Heinze G, Mieth S and Halfmann T 2011 Phys. Rev. A 84 013827
[22] Bao Q Q, Gao J W, Cui C L, Wang G, Xue Y and Wu J H 2011 Opt. Express 19 11832
[23] Turukhin A V, Sudarshanam V S, Shahriar M S, Musser J A, Ham B S and Hemmer P R 2001 Phys. Rev. Lett. 88 023602
[24] Longdell J J, Fraval E, Sellars M J and Manson N B 2005 Phys. Rev. Lett. 95 063601
[25] Wang H H, Wei X G, Wang L, Li Y J, Du D M, Wu J H, Kang Z H, Jiang Y and Gao J Y 2007 Opt. Express 15 16044
[26] Ham B S 2008 Phys. Rev. A 78 011808
[27] Ham B S and Hemmer P R 2000 Phys. Rev. Lett. 84 4080
[28] Wang H H, Du D M, Fan Y F, Li A J, Wang L, Wei X G, Kang Z H, Jiang Y, Wu J H and Gao J Y 2008 Appl. Phys. Lett. 93 231107
[29] Klein J, Beil F and Halfmann T 2007 Phys. Rev. Lett. 99 113003
[30] Lauritzen B, Minar J, deRiedmatten H, Afzelius M, Sangouard N, Simon C and Gisin N 2010 Phys. Rev. Lett. 104 080502
[31] Afzelius M, Usmani I, Amari A, Lauritzen B, Walther A, Simon C, Sangouard N, Minar J, deRiedmatten H, Gisin N and Kroll S 2010 Phys. Rev. Lett. 104 040503
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[3] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[4] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[7] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[8] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[9] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[10] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[11] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[12] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[13] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[14] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[15] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
No Suggested Reading articles found!