Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 116103    DOI: 10.1088/1674-1056/22/11/116103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Critical size of iron nanoparticles on liquid substrates

Lü Neng (吕能)a, Pan Qi-Fa (潘启发)a, Cheng Yi (程毅)a, Yang Bo (杨波)a, Ye Gao-Xiang (叶高翔)a b
a Department of Physics, Zhejiang University, Hangzhou 310027, China;
b Department of Physics, Hangzhou Normal University, Hangzhou 310036, China
Abstract  We study the iron atomic aggregates deposited on silicone oil surfaces by using atomic force microscopy. The aggregates are composed of disk-shaped nanoparticles with the mean diameter Φc≈31.7 nm and height Hc≈4.5 nm, which are nearly independent of the nominal film thickness. The experiment shows that a material condensation process must occur in the nanoparticles during the growth period. The anomalous phenomenon is explained.
Keywords:  critical size      nanoparticle      condensation behavior      liquid substrate  
Received:  29 January 2013      Revised:  08 June 2013      Accepted manuscript online: 
PACS:  61.46.-w (Structure of nanoscale materials)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  68.37.Ps (Atomic force microscopy (AFM))  
  68.55.J- (Morphology of films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074215) and the Fundamental Research Funds for Central Universities of Ministry of Education of China (Grant No. 2012QNA3010).
Corresponding Authors:  Ye Gao-Xiang     E-mail:  gxye@mail.hz.zj.cn

Cite this article: 

Lü Neng (吕能), Pan Qi-Fa (潘启发), Cheng Yi (程毅), Yang Bo (杨波), Ye Gao-Xiang (叶高翔) Critical size of iron nanoparticles on liquid substrates 2013 Chin. Phys. B 22 116103

[1] Bromann K, Félix C, Brune H, HarbichW, Monot R, Buttet J and Kern K 1996 Science 274 956
[2] Chopra N G, Benedict L X, Crespi V H, Cohen M L, Louie S G and Zettl A 1995 Nature 377 135
[3] Shimizu T, Haruyama J, Marcano D C, Kosinkin D V, Tour J M, Hirose K and Suenaga K 2011 Nature Nanotech. 6 45
[4] Zuo J M and Li B Q 2002 Phys. Rev. Lett. 88 255502
[5] Tang D S, Zhou W Y, Ci L J, Yan X Q, Yuan H J, Zhou Z P, Liang Y X, Liu D F and Liu W 2002 Chin. Phys. B 11 496
[6] Shi J, Votruba A R, Farokhzad O C and Langer R 2010 Nano Lett. 10 3223
[7] Mu Y, Liang H, Hu J, Jiang L and Wan L 2005 J. Phys. Chem. B 109 22212
[8] Amali A J and Rana R K 2008 Chem. Commun. 4165
[9] Ye G X, Michely T,Weidenhof V, Friedrich I andWuttig M1998 Phys. Rev. Lett. 81 622
[10] Torimoto T, Tsuda T, Okazaki K and Kuwabata S 2010 Adv. Mater. 22 1196
[11] Dupont J and Scholten J D 2010 Chem. Soc. Rev. 39 1780
[12] Yu S J, Zhang Y J, Ye Q L, Cai P G, Tang XWand Ye G X 2003 Phys. Rev. B 68 193403
[13] Zhang X F, Zhang C H, Lv N, Xie J P and Ye G X 2010 Chin. Phys. Lett. 27 096102
[14] Gorth D J, Rand D M and Webster T J 2011 Int. J. Nanomed. 6 343
[15] Jiang J, Oberdörster G, Elder A, Gelein R, Mercer P and Biswas P 2008 Nanotoxicology 2 33
[16] Chen Y, Zhang Y, Birch D J S and Barnard A S 2012 Nanoscale 4 5017
[17] Parent L R, Robinson D B, Woehl T J, Ristenpart W D, Evans J E, Browning N D and Arslan I 2012 ACS Nano 6 3589
[18] Woehl T J, Evans J E, Arslan I, Ristenpart W D and Browning N D 2012 ACS Nano 6 8599
[19] Imanishi A, Gonsui S, Tsuda T, Kuwabata S and Fukui K 2011 Phys. Chem. Chem. Phys. 13 14823
[20] Kameyama T, Ohno Y, Kurimoto T, Okazaki K, Uematsu T, Kuwabata S and Torimoto T 2010 Phys. Chem. Chem. Phys. 12 1804
[21] Khatri O P, Adachi K, Murase K, Okazaki K, Torimoto T, Tanaka N, Kuwabata S and Sugimura H 2008 Langmuir 24 7785
[22] Ye Q L, Xu X J, Cai P G, Xia A G and Ye G X 2003 Phys. Lett. A 318 457
[23] Fang Z N, Yang B, Chen M G, Zhang C H, Xie J P and Ye G X 2009 Thin Solid Films 517 3408
[24] Zhang C H, Lv N, Zhang X F, Ajeeb S, Xia A G and Ye G X 2011 Chin. Phys. B 20 066103
[25] Zhang C, Lv N, Zhu Y, Zhang X and Ye G 2012 J. Phys. Soc. Jpn. 81 034602
[26] Chen M G, Yu S J, Feng Y X, Jiao ZW, Yu M Z and Yang B 2010 Thin Solid Films 518 2674
[27] Zhang X, Zhang C, Yang B, Lv N, Pan Q and Ye G 2011 J. Phys. Soc. Jpn. 80 104603
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[3] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[4] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[5] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[6] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[7] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[8] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[9] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[10] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[11] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[12] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[13] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[14] Palladium nanoparticles/wool keratin-assisted carbon composite-modified flexible and disposable electrochemical solid-state pH sensor
Wenli Zhang(张文立), Xiaotian Liu(刘笑天), Youhui Lin(林友辉), Liyun Ma(马利芸), Linqing Kong(孔令庆), Guangzong Min(闵光宗), Ronghui Wu(吴荣辉), Sharwari K. Mengane, Likun Yang(杨丽坤), Aniruddha B. Patil, and Xiang Yang Liu(刘向阳). Chin. Phys. B, 2022, 31(2): 028201.
[15] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
No Suggested Reading articles found!