INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Structural and optical properties of a NaCl single crystal doped with CuO nanocrystals |
S. Addalaa, L. Bouhdjera, A. Chalab, A. Bouhdjarb, O. Halimia, B. Boudinea, M. Sebaisa |
a Laboratory of Crystallography, Department of Physics, Mentouri University of Constantine, Constantine 25000, Algeria; b Laboratory of Applied Chemistry, Department of Physics, Mohamed Khaider University of Biskra, Biskra 07000, Algeria |
|
|
Abstract A cupric oxide (CuO) nanocrystal-doped NaCl single crystal and a pure NaCl single crystal are grown by using the Czochralski (Cz) method. A number of techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, optical absorption in the UV-visible range, and photoluminescence (PL) spectroscopy are used to characterize the obtained NaCl and NaCl:CuO crystals. It is observed that the average radius of CuO crystallites in NaCl:CuO crystal is about 29.87 nm, as derived from the XRD data analysis. Moreover, FT-IR and Raman spectroscopy results confirm the existence of the monoclinic CuO phase in NaCl crystal. UV-visible absorption measurements indicate that the band gap of the NaCl:CuO crystal is 434 nm (2.85 eV), and it shows a significant amount of blue-shift (ΔEg=1 eV ) in the band gap energy of CuO, which is due to the quantum confinement effect exerted by the CuO nanocrystals. The PL spectrum of the NaCl:CuO shows a broad emission band centred at around 438 nm, which is consistent with the absorption measurement.
|
Received: 22 July 2012
Revised: 04 March 2013
Accepted manuscript online:
|
PACS:
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
Fund: Project supported by the Crystallography Laboratory of the University of Constantine, Algeria. |
Corresponding Authors:
L. Bouhdjer
E-mail: bouhdjerlazhar@gmail.com
|
Cite this article:
S. Addala, L. Bouhdjer, A. Chala, A. Bouhdjar, O. Halimi, B. Boudine, M. Sebais Structural and optical properties of a NaCl single crystal doped with CuO nanocrystals 2013 Chin. Phys. B 22 098103
|
[1] |
Frietsch M, Zudock F, Goschnick J and Bruns M 2000 Sensor. Actuators. B 65 379
|
[2] |
Maruyama T 1998 Sol. Energy Mater. Solar Cells 56 85
|
[3] |
Jiang Y, Decker S, Mohs C and Klabunde K J 1998 Catalysis 180 24
|
[4] |
Ao B, Kummerl L and Haarer K 1995 Adv. Mater. 7 495
|
[5] |
Muller K H 2001 High-Tc Supperconductors and Related Materials (Dordrecht: Kluwer Academic)
|
[6] |
Chen J, Deng S, Xu N, Zhang W, Wen X and Yang S 2003 Appl. Phys. Lett. 83 746
|
[7] |
Yeon S C, Sung W Y, Kim W J, Lee S M, Lee H Y, Kim Y H and Vac J 2006 Sci. Technol. B 24 940
|
[8] |
Hsieh C T, Chen J M, Lin H H and Shih H C 2003 Appl. Phys. Lett. 83 3383
|
[9] |
Zhu Y W, Yu T, Cheong F C, Xu X J, Lim C T, Tan V B C, Thong J T L and Sow C H 2005 Nanotechnology 16 88
|
[10] |
Fröhlich D, Haselhoff M and Reimann K 1995 Solid State Commun. 94 189
|
[11] |
Haselhoff M and Weber H J 1998 Phys. Rev. B 58 5052
|
[12] |
Vogelsang H, Husberg O, Köhler U and Von der Osten W 2000 Phy. Rev. B 61 1874
|
[13] |
Baranov P G, Romanov N G, Khramtsov V A and Vikhnin V S 2001 J. Phys.: Condens. Matter 13 2651
|
[14] |
Halimi O, Boudine B, Sebais M, Challouche A, Mouras R and Boudrioua A 2003 Mater. Sci. Eng. C 23 1111
|
[15] |
Boudine B, Sebais M, Halimi O, Alliouche H, Boudrioua A and Mouras R 2004 Catal. Today 89 293
|
[16] |
Bensouici A, Plaza J L, Diéguez E, Halimi O, Boudine B, Addala S, Guerbous L and Sebais M 2009 Luminescence 129 948
|
[17] |
Taketashi K and Takeshi H 2012 Luminescence 132 513
|
[18] |
Sung M K, Gwang S K and Sang Y L 2008 Mater. Lett. 62 4354
|
[19] |
Daniel D J, Ramasamy P, Madhusoodanan U and Bhagavannarayana G 2012 J. Cryst. Growth 353 95
|
[20] |
Seung-Suk S and Kyung-Woo Y 2005 J. Cryst. Growth 275 e249
|
[21] |
Cullity B D 1978 Elements of X-Ray Diffraction (2nd edn.) (Reading, MA: Addision-Wesley) p. 102
|
[22] |
Zhu J, Chan H, Liu H, Yang X, Lu L and Wang X 2004 Mater. Sci. Eng. A 384 172
|
[23] |
Yoshikawa M, Obata Y and Maegawa M 1995 Appl. Phys. Lett. 67 694
|
[24] |
Jian Z, Buscher H, Falter C, Ludwig W, Zhang K and Xie X 1996 Appl. Phys. Lett. 69 200
|
[25] |
Goldstein H F, Kim D S, Yu P Y and Bourne L C 1990 Phys. Rev. B 41 7192
|
[26] |
Xu J F, Ji W, Shen Z X, Tang S H, Ye X R, Jia D Z and Xin X Q 1999 Solid State Chem. 147 516
|
[27] |
Wang Z, Pischedda V, Saxena S K and Lazor P 2002 Solid State Commun. 121 275
|
[28] |
Dar M A, Ahsanulhaq Q, Kim Y S, Sohn J M, Kim W B and Shin H S 2009 Appl. Surf. Sci. 255 6279
|
[29] |
Balamurugan B and Mehta B R 2001 Thin Solid Films 396 90
|
[30] |
Dar M A, Kim Y S, Kim W B, Sohn J M and Shin H S 2008 Appl. Surf. Sci. 254 7477
|
[31] |
Othmani A, Plenet J C, Berstein E and Bouvier C 1994 J. Cryst. Growth 144 141
|
[32] |
Maji S K, Mukherjee N, Mondal A, Adhikary B and Karmakar B 2010 Solid State Chem. 183 1900
|
[33] |
Santra K, Sarka C K, Mukherjee M K and Cosh B 1992 Thin Solid Films 213 226
|
[34] |
Abdul Momin M, Roksana P, Jalal Uddin M, Arifuzzaman Khan G M and Momtazul Islam 2010 J. Bangladesh Electron. 10 57
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|