Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 098102    DOI: 10.1088/1674-1056/22/9/098102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Germanium nanoislands grown by radio frequency magnetron sputtering:Annealing time dependent surface morphology and photoluminescence

Alireza Samavatia, Z. Othamana, S. K. Ghoshalb, R. J. Amjadb
a Ibn Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 Skudai, Johor Baharu, Malaysia;
b Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
Abstract  Structural and optical properties of ~ 20 nm Ge nanoislands grown on Si(100) by radio frequency (rf) magnetron sputtering under varying annealing conditions are reported. Rapid thermal annealing at a temperature of 600℃ for 30 s, 90 s, and 120 s are performed to examine the influence of annealing time on the surface morphology and photoluminescence properties. X-ray diffraction spectra reveal prominent Ge and GeO2 peaks highly sensitive to the annealing time. Atomic force microscope micrographs of the as-grown sample show pyramidal nanoislands with relatively high-density (~ 1011 cm-2). The nanoislands become dome-shaped upon annealing through a coarsening process mediated by Oswald ripening. The room temperature photoluminescence peaks for both as-grown (~ 3.29 eV) and annealed (~ 3.19 eV) samples consist of high intensity and broad emission, attributed to the effect of quantum confinement. The red shift (~ 0.10 eV) of the emission peak is attributed to the change in the size of the Ge nanoislands caused by annealing. Our easy fabrication method may contribute to the development of Ge nanostructure-based optoelectronics.
Keywords:  germanium nanoislands      radio frequency magnetron sputtering      photoluminescence      surface morphology  
Received:  04 March 2013      Revised:  21 March 2013      Accepted manuscript online: 
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  79.20.Rf (Atomic, molecular, and ion beam impact and interactions with surfaces)  
  78.55.+m  
Fund: Project supported by the International Doctoral Fellowship (IDF), Ibnu Sina Institute for Fundamental Science Study and research grants of MoHE GUP. Vot No. 02H94 and 07J80.
Corresponding Authors:  Z. Othaman     E-mail:  zulothaman@gmail.com

Cite this article: 

Alireza Samavati, Z. Othaman, S. K. Ghoshal, R. J. Amjad Germanium nanoislands grown by radio frequency magnetron sputtering:Annealing time dependent surface morphology and photoluminescence 2013 Chin. Phys. B 22 098102

[1] Samavati A R, Othaman Z, Ghoshal S K, Dousti M R and Amjad R J 2012 Chin. Phys. Lett. 29 118101
[2] Fujii M, Kanzava Y, Hayashi S and Yamamoto K 1996 Phys. Rev. B 54 8373
[3] Ekimov A 1996 J. Lumin. 70 1
[4] Huang S, Xia Z, Xia H, Zheng J, Xie Y and Xie G 2009 Surf. Coat. Technol. 204 558
[5] Ray S K and Das K 2005 Opt. Mater. 27 948
[6] Das K, Goswami M L N, Dhar A, Mathur B K and Ray S K 2007 Nanotechnology 18 175301
[7] Yang J, Jin Y, Wang C, Li L, Tao D and Yang Y 2012 Appl. Surf. Sci. 258 3637
[8] Jie Y X, Wee A T S, Huan C H A, Sun W X, Shen Z X and Chuab S J 2004 Mater. Sci Eng. B 107 8
[9] Zhao Y N, Cao M S, Jin H B, Zhang L and Qiu C J 2006 Scripta Mater. 54 2057
[10] Yang X Y, Cheng J Y, LI B, CAO W Q, Yuan J, Zhang D Q and Cao M S 2012 Chin. Phys. Lett. 29 108101
[11] Mestanza S N M, Rodriguez E and Frateschi N C 2006 Nanotechnology 17 4548
[12] Sun K W, Sue S H and Liu C W 2005 Physica E 28 525
[13] Wan Q, Wang T H, Liu W L and Lin C L 2003 J. Cryst. Growth. 249 23
[14] Eaglesham D J and Cerullo M 1990 Phys. Rev. Lett. 64 1943
[15] Ronda A, Abdallah M, Gay J M, Stettner J and Berbezier I 2000 Appl. Surf. Sci. 162 576
[16] Mckay M R, Shumway J and Drucker J 2006 J. Appl. Phys. 99 094305
[17] Berbezier I, Ronda A, Volpi F and Portavoce A 2003 Surf. Sci. 531 231
[18] Kamins T I, Medeiros-Ribeiro G, Olhberg D A A and Williams R S J 1999 Appl. Phys. 85 1159
[19] Floro J A, Sinclair M B, Chason E, Freund L B, Twesten R D, Hwang R Q and Lucadamo G A 2000 Phys. Rev. Lett. 84 701
[20] Goldfarb I, Hayden P T, Owen J H G and Briggs G A D 1997 Phys. Rev. B 56 10459
[21] Singha R K, Das S, Majumdar S, Das K, Dhar A and Ray S K 2008 J. Appl. Phys. 103 114301
[22] Hullavarad S, Hullavarad N and Claflin D B 2009 Nanoscale Res. Lett. 4 1421
[23] Choi W K, Ng V, Ng S P, Thio H H, Shen Z X and Li W S 1999 J. Appl. Phys. 86 1398
[24] Samavati A R, Ghoshal S K and Othaman Z 2012 Chin. Phys. Lett. 29 048101
[25] Jie Y X, Wee A T S, Huan C H A, Sun W X, Shen Z X and Chua S J 2004 Mater. Sci. Eng. B 107 8
[26] Zacharias M and Fauchet P M 1997 Appl. Phys. Lett. 71 380
[27] Ginzburg L P, Gordeev A A, Gorchakov A P and Jilinsky A P 1995 J. Non-Cryst. Solids. 183 234
[28] Gallagher M and Osterberg U 1993 J. Appl. Phys. 74 2771
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[4] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[5] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[6] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[7] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[8] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[9] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[10] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[11] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[12] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[13] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[14] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[15] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
No Suggested Reading articles found!