Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 087704    DOI: 10.1088/1674-1056/22/8/087704
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Analysis of the electrically forced vibrations of piezoelectric mesa resonators

He Hui-Jing (何慧晶)a b, Nie Guo-Quan (聂国权)a, Liu Jin-Xi (刘金喜)a, Yang Jia-Shi (杨嘉实)b
a Department of Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China;
b Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0526, USA
Abstract  We study the electrically forced thickness-shear and thickness-twist vibrations of stepped thickness piezoelectric plate mesa resonators made of polarized ceramics or 6-mm class crystals. A theoretical analysis based on the theory of piezoelectricity is performed, and an analytical solution is obtained using the trigonometric series. The electrical admittance, resonant frequencies, and mode shapes are calculated, and strong energy trapping of the modes is observed. Their dependence on the geometric parameters of the resonator is also examined.
Keywords:  crystal      plate      resonance      resonator  
Received:  13 January 2013      Revised:  25 January 2013      Accepted manuscript online: 
PACS:  77.65.Fs (Electromechanical resonance; quartz resonators)  
  77.65.-j (Piezoelectricity and electromechanical effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11272222) and the National Key Basic Research Program of China (Grant No. 2012CB723300).
Corresponding Authors:  Yang Jia-Shi     E-mail:  jyang1@unl.edu

Cite this article: 

He Hui-Jing (何慧晶), Nie Guo-Quan (聂国权), Liu Jin-Xi (刘金喜), Yang Jia-Shi (杨嘉实) Analysis of the electrically forced vibrations of piezoelectric mesa resonators 2013 Chin. Phys. B 22 087704

[1] Koga I 1932 Phys. 3 70
[2] Tiersten H F 1963 J. Acoust. Soc. Am. 35 53
[3] Tiersten H F 2003 IEEE Trans. Ultrason. Ferroelect. Freq. Control 50 1436
[4] Mindlin R D 1965 Int. J. Solids Struct. 1 141
[5] Yang Z T, Hu Y T and Yang J S 2009 Ultrason. 49 401
[6] Mindlin R D and Lee P C Y 1966 Int. J. Solids Struct. 2 125
[7] Yang J S and Kosinski J A 2004 IEEE Trans. Ultrason. Ferroelect. Freq. Control 51 1047
[8] Tiersten H F and Smyth R C 1979 J Acoust. Soc. Am. 65 1455
[9] Tiersten H F and Stevens D S 1986 J. Acoust. Soc. Am. 80 1122
[10] Onoe M and Okada K 1969 Proc. 23rd Annual Frequency Control Symp. (Atlantic City: Institute of Electrical and Electronics Engineers)
[11] Sinha B K 2001 IEEE Trans. Ultrason, Ferroelec. Freq. Control 48 1162
[12] Shen F, O'Shea S J, Lee K H, Lu P and Ng T Y 2003 IEEE Trans. Ultrason. Ferroelect. Freq. Control 50 668
[13] Ishizaki A, Sekimoto H, Tajima D and Watanabe Y 1995 Proc. IEEE Ultrasonics Symp. (USA: Institute of Electrical and Electronics Engineers)
[14] Goka S, Sekimoto H and Watanabe Y 1999 Proc. IEEE Int. Frequency Control Symp. (France: Institute of Electrical and Electronics Engineers)
[15] Goka S, Sekimoto H and Watanabe Y 2000 Proc. IEEE Int. Frequency Control Symp. (USA: Institute of Electrical and Electronics Engineers)
[16] Sekimoto H, Goka S and Watanabe Y 2001 IEEE Trans. Ultrason. Ferroelect. Freq. Control 48 1302
[17] Goka S, Tamura K, Sekimoto H, Watanabe Y and Sato T 2003 Proc. IEEE Int. Frequency Control Symp. (Tampa: Institute of Electrical and Electronics Engineers)
[18] Watanabe Y, Goka S, Sato T and Sekimoto H 2003 Proc. IEEE Int. Frequency Control Symp. (Tampa: Institute of Electrical and Electronics Engineers)
[19] Goka S, Mase Y, Sekimoto H, Watanabe Y and Sato T 2004 Proc. IEEE Int. Frequency Control Symp. (Montreal: Institute of Electrical and Electronics Engineers)
[20] Goka S, Mase Y, Sekimoto H and Watanabe Y 2006 Proc. IEEE Int. Frequency Control Symp. (Miami: Institute of Electrical and Electronics Engineers)
[21] He H J, Liu J X and Yang J S 2011 IEEE Trans. Ultrason. Ferroelect. Freq. Control 58 2050
[22] Zhang H, Wang Z Q and Zhang S Y 2006 Acta Acustica 31 8
[23] Mo S M, Zhao J Z, Wu G M and Chen J M 2008 Technical Acoustics 27 167
[24] Du J K, Xian K, Wang J and Yang J S 2009 Ultrasonics 49 149
[25] Qin L F, Chen Q M, Cheng H B and Wang Q M 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 1840
[26] Cao X S, Jin F and Yang J S 2012 IEEE Trans. Ultrason. Ferroelect. Freq. Control 59 2522
[27] Wang W Y, Zhang C, Zhang Z T, Liu Y and Feng G P 2009 Chin. Phys. B 18 795
[28] Ma T F, Zhang C, Feng G P and Jiang X N 2010 Chin. Phys. B 19 087701
[29] Ma T F, Zhang C, Jiang X N and Feng G P 2011 Chin. Phys. B 20 057701
[30] Yang J S 2010 Antiplane Motions of Piezoceramics and Acoustic Wave Devices (Singapore: World Scientific)
[31] Bleustein J L 1969 J. Acoust. Soc. Am. 45 614
[32] Tiersten H F 1969 Linear Piezoelectric Plate Vibrations (New York: Plenum)
[33] Auld B A 1973 Acoustic Fields and Waves in Solids, Vol. 1 (New York: John Willey and Sons) pp. 357-382
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[3] Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln = Nd, Sm, and Eu)
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊). Chin. Phys. B, 2023, 32(4): 047505.
[4] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[5] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[6] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[7] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[8] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[9] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[10] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[11] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[12] Investigation of spatial structure and sympathetic cooling in the 9Be+40Ca+ bi-component Coulomb crystals
Min Li(李敏), Yong Zhang(张勇), Qian-Yu Zhang(张乾煜), Wen-Li Bai(白文丽), Sheng-Guo He(何胜国), Wen-Cui Peng(彭文翠), and Xin Tong(童昕). Chin. Phys. B, 2023, 32(3): 036402.
[13] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[14] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[15] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
No Suggested Reading articles found!