|
|
Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln=Nd, Sm, and Eu) |
Jin-Qun Zhong(钟金群)1, Zhen-Wei Yu(余振伟)1, Xiao-Yu Yue(岳小宇)5, Yi-Yan Wang(王义炎)2, Hui Liang(梁慧)2, Yan Sun(孙燕)2, Dan-Dan Wu(吴丹丹)2, Zong-Ling Ding(丁宗玲)4, Jin Sun(孙进)4, Xue-Feng Sun(孙学峰)3,‡, and Qiu-Ju Li(李秋菊)4,† |
1 School of Materials Science and Engineering, Anhui University, Hefei 230601, China; 2 Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 3 Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics(CAS), University of Science and Technology of China, Hefei 230026, China; 4 School of Physics and Optoelectronic engineering, Anhui University, Hefei 230601, China; 5 School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China |
|
|
Abstract To study the effects of lanthanide ions on the geometrically frustrated antiferromagnets and their magnetic properties, we grew high-quality single crystals of $Ln$Cu$_{3}$(OH)$_{6}$Br$_{3}$ ($Ln={\rm Nd}$, Sm, and Eu) by hydrothermal method and studied their crystal structures and magnetic properties. The refinements of the crystal structure referred to the powder x-ray diffraction data show that $Ln$Cu$_{3}$(OH)$_{6}$Br$_{3}$ adopt a Kapellasite-type layer structure, which is isostructural to their chlorine analogue. Magnetic susceptibilities demonstrate that $Ln$Cu$_{3}$(OH)$_{6}$Br$_{3}$ have strong antiferromagnetic coupling and a pronounced magnetic frustration effect. Magnetization measurements indicate canted antiferromagnetic ordering of Cu$^{2+}$ ions around 16 K within the kagomé plane and weak ferromagnetic coupling. Moreover, shoulder-like anomalies in specific heat around 16 K could be a signature of emergent of magnetic ordering. The low-temperature negative magnetization and specific heat of $Ln$Cu$_{3}$(OH)$_{6}$Br$_{3}$ ($Ln={\rm Nd}$, Sm, and Eu) indicate that $Ln^{3+}$ ions induce more exotic magnetic ground state properties.
|
Received: 09 January 2023
Revised: 03 February 2023
Accepted manuscript online: 08 February 2023
|
PACS:
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
75.40.Cx
|
(Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))
|
|
06.60.Ei
|
(Sample preparation)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
Fund: Project supported by the Natural Science Foundation of Anhui Province, China (Grant Nos. 2108085MA16 and 2108085QA22), the Key Project of Anhui Provincial Department of Education (Grant No. KJ2020A0013), the Key Project of the Foundation of Anhui Education Committee, China (Grant No. 2022AH050066), and the National Natural Science Foundation of China (Grant Nos. U1832209, 11874336, 12274338, 12104010, 12104011, 52102333, and 12004003). |
Corresponding Authors:
Qiu-Ju Li, Xue-Feng Sun
E-mail: liqj@ahu.edu.cn;xfsun@ustc.edu.cn
|
Cite this article:
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊) Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln=Nd, Sm, and Eu) 2023 Chin. Phys. B 32 047505
|
[1] Balents L 2010 Nature 464 199 [2] Gen M and Suwa H 2022 Phys. Rev. B 105 174424 [3] Balz C, Lake B, Reuther J, Luetkens H, Schönemann R, Herrmannsdörfer T, Singh Y, Nazmul Islam A T M, Wheeler E M, Rodriguez Rivera Jose A, Guidi T, Simeoni Giovanna G, Baines C and Ryll H 2016 Nat. Phys. 12 942 [4] Mei J W, Chen J Y, He H and Wen X G 2017 Phys. Rev. B 95 235107 [5] Arh T, Gomilšek M, Prelovšek P, Pregelj M, Klanjšek M, Ozarowski A, Clark S J, Lancaster T, Sun W, Mi J X and Zorko A 2020 Phys. Rev. Lett. 125 027203 [6] Paddison J A M, Daum M, Dun Z L, Ehlers G, Liu Y H, Stone M B, Zhou H D and Mourigal M 2017 Nat. Phys. 13 117 [7] Yan S, Huse D A and White S R 2011 Science 332 1173 [8] Fu M, Imai T, Han T H and Lee Y S 2015 Science 350 655 [9] Helton J S, Matan K, Shores M P, Nytko E A, Bartlett B M, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung J H, Nocera D G and Lee Y S 2007 Phys. Rev. Lett. 98 107204 [10] Khuntia P, Velazquez M, Barthélemy Q, Bert F, Kermarrec E, Legros A, Bernu B, Messio L, Zorko A and Mendels P 2020 Nat. Phys. 16 469 [11] Lu F, Yuan L, Zhang J, Li B, Luo Y and Li Y 2022 Commun. Phys. 5 272 [12] Bert F, Olariu A, Zorko A, Mendels P, Trombe J C, Duc F, Vries M A d, Harrison A, Hillier A D, Lord J, Amato A and Baines C 2009 J. Phys.: Conf. Ser. 145 012004 [13] Sun W, Huang Y X, Nokhrin S, Pan Y and Mi J X 2016 J. Mater. Chem. C 4 8772 [14] Zorko A, Pregelj M, Gomilšek M, Klanjšek M, Zaharko O, Sun W and Mi J X 2019 Phys. Rev. B 100 144420 [15] Zorko A, Pregelj M, Klanjšek M, Gomilšek M, Jagličić Z, Lord J S, Verezhak J A T, Shang T, Sun W and Mi J X 2019 Phys. Rev. B 99 214441 [16] Barthélemy Q, Puphal P, Zoch K M, Krellner C, Luetkens H, Baines C, Sheptyakov D, Kermarrec E, Mendels P and Bert F 2019 Phys. Rev. Mater. 3 074401 [17] Chen X H, Huang Y X, Pan Y and Mi J X 2020 J. Magn. Magn. Mater. 512 167066 [18] Zeng Z Y, Ma X Y, Wu S, Li H F, Tao Z, Lu X Y, Chen X H, Mi J X, Song S J, Cao G H, Che G W, Li K, Li G, Luo H Q, Meng Z Y and Li S L 2022 Phys. Rev. B 105 L121109 [19] Liu J, Yuan L, Li X, Li B, Zhao K, Liao H and Li Y 2022 Phys. Rev. B 105 024418 [20] Hong X, Behnami M, Yuan L, Li B, Brenig W, Büchner B, Li Y and Hess C 2022 Phys. Rev. B 106 L220406 [21] Sun W, Huang Y X, Pan Y and Mi J X 2017 Dalton Trans. 46 9535 [22] Puphal P, Zoch K M, Désor J, Bolte M and Krellner C 2018 Phys. Rev. Mater. 2 063402 [23] Fu Y, Huang L, Zhou X, Chen J, Zhang X, Chen P, Wang S, Liu C, Yu D, Li H F, Wang L and Mei J W 2021 Chin. Phys. B 30 100601 [24] Matsuhira K, Wakeshima M, Hinatsu Y and Takagi S 2011 J. Phys. Soc. Jpn. 80 094701 [25] Rousochatzakis I, Manmana S R, Läuchli A M, Normand B and Mila F 2009 Phys. Rev. B 79 214415 [26] Lee C Y, Normand B and Kao Y J 2018 Phys. Rev. B 98 224414 [27] Kumar A and Yusuf S M 2015 Phys. Rep. 556 1 [28] Wang Y, Ni S, Zhang H, Wang H, Su K, Yang D, Huang S, Huo D and Tan W 2022 Appl. Phys. A 128 839 [29] Yang A M, Sheng Y H, Farid M A, Zhang H, Lin X H, Li G B, Liu L J, Liao F H and Lin J H 2016 RSC Adv. 6 13928 [30] Kumar P, Kumar R, Pandey S, Suresh K G and Nigam A K 2014 Physica B 448 6 [31] Li Q J, Zhao Z Y, Zhou H D, Ke W P, Wang X M, Fan C, Liu X G, Chen L M, Zhao X and Sun X F 2012 Phys. Rev. B 85 174438 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|