Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 047505    DOI: 10.1088/1674-1056/acb9e8
RAPID COMMUNICATION Prev   Next  

Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln=Nd, Sm, and Eu)

Jin-Qun Zhong(钟金群)1, Zhen-Wei Yu(余振伟)1, Xiao-Yu Yue(岳小宇)5, Yi-Yan Wang(王义炎)2, Hui Liang(梁慧)2, Yan Sun(孙燕)2, Dan-Dan Wu(吴丹丹)2, Zong-Ling Ding(丁宗玲)4, Jin Sun(孙进)4, Xue-Feng Sun(孙学峰)3,‡, and Qiu-Ju Li(李秋菊)4,†
1 School of Materials Science and Engineering, Anhui University, Hefei 230601, China;
2 Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
3 Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics(CAS), University of Science and Technology of China, Hefei 230026, China;
4 School of Physics and Optoelectronic engineering, Anhui University, Hefei 230601, China;
5 School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China
Abstract  To study the effects of lanthanide ions on the geometrically frustrated antiferromagnets and their magnetic properties, we grew high-quality single crystals of $Ln$Cu$_{3}$(OH)$_{6}$Br$_{3}$ ($Ln={\rm Nd}$, Sm, and Eu) by hydrothermal method and studied their crystal structures and magnetic properties. The refinements of the crystal structure referred to the powder x-ray diffraction data show that $Ln$Cu$_{3}$(OH)$_{6}$Br$_{3}$ adopt a Kapellasite-type layer structure, which is isostructural to their chlorine analogue. Magnetic susceptibilities demonstrate that $Ln$Cu$_{3}$(OH)$_{6}$Br$_{3}$ have strong antiferromagnetic coupling and a pronounced magnetic frustration effect. Magnetization measurements indicate canted antiferromagnetic ordering of Cu$^{2+}$ ions around 16 K within the kagomé plane and weak ferromagnetic coupling. Moreover, shoulder-like anomalies in specific heat around 16 K could be a signature of emergent of magnetic ordering. The low-temperature negative magnetization and specific heat of $Ln$Cu$_{3}$(OH)$_{6}$Br$_{3}$ ($Ln={\rm Nd}$, Sm, and Eu) indicate that $Ln^{3+}$ ions induce more exotic magnetic ground state properties.
Keywords:  kagomé      lattice      antiferromagnet      single crystal      spin frustration  
Received:  09 January 2023      Revised:  03 February 2023      Accepted manuscript online:  08 February 2023
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.40.Cx (Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))  
  06.60.Ei (Sample preparation)  
  61.05.cp (X-ray diffraction)  
Fund: Project supported by the Natural Science Foundation of Anhui Province, China (Grant Nos. 2108085MA16 and 2108085QA22), the Key Project of Anhui Provincial Department of Education (Grant No. KJ2020A0013), the Key Project of the Foundation of Anhui Education Committee, China (Grant No. 2022AH050066), and the National Natural Science Foundation of China (Grant Nos. U1832209, 11874336, 12274338, 12104010, 12104011, 52102333, and 12004003).
Corresponding Authors:  Qiu-Ju Li, Xue-Feng Sun     E-mail:  liqj@ahu.edu.cn;xfsun@ustc.edu.cn

Cite this article: 

Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊) Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln=Nd, Sm, and Eu) 2023 Chin. Phys. B 32 047505

[1] Balents L 2010 Nature 464 199
[2] Gen M and Suwa H 2022 Phys. Rev. B 105 174424
[3] Balz C, Lake B, Reuther J, Luetkens H, Schönemann R, Herrmannsdörfer T, Singh Y, Nazmul Islam A T M, Wheeler E M, Rodriguez Rivera Jose A, Guidi T, Simeoni Giovanna G, Baines C and Ryll H 2016 Nat. Phys. 12 942
[4] Mei J W, Chen J Y, He H and Wen X G 2017 Phys. Rev. B 95 235107
[5] Arh T, Gomilšek M, Prelovšek P, Pregelj M, Klanjšek M, Ozarowski A, Clark S J, Lancaster T, Sun W, Mi J X and Zorko A 2020 Phys. Rev. Lett. 125 027203
[6] Paddison J A M, Daum M, Dun Z L, Ehlers G, Liu Y H, Stone M B, Zhou H D and Mourigal M 2017 Nat. Phys. 13 117
[7] Yan S, Huse D A and White S R 2011 Science 332 1173
[8] Fu M, Imai T, Han T H and Lee Y S 2015 Science 350 655
[9] Helton J S, Matan K, Shores M P, Nytko E A, Bartlett B M, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung J H, Nocera D G and Lee Y S 2007 Phys. Rev. Lett. 98 107204
[10] Khuntia P, Velazquez M, Barthélemy Q, Bert F, Kermarrec E, Legros A, Bernu B, Messio L, Zorko A and Mendels P 2020 Nat. Phys. 16 469
[11] Lu F, Yuan L, Zhang J, Li B, Luo Y and Li Y 2022 Commun. Phys. 5 272
[12] Bert F, Olariu A, Zorko A, Mendels P, Trombe J C, Duc F, Vries M A d, Harrison A, Hillier A D, Lord J, Amato A and Baines C 2009 J. Phys.: Conf. Ser. 145 012004
[13] Sun W, Huang Y X, Nokhrin S, Pan Y and Mi J X 2016 J. Mater. Chem. C 4 8772
[14] Zorko A, Pregelj M, Gomilšek M, Klanjšek M, Zaharko O, Sun W and Mi J X 2019 Phys. Rev. B 100 144420
[15] Zorko A, Pregelj M, Klanjšek M, Gomilšek M, Jagličić Z, Lord J S, Verezhak J A T, Shang T, Sun W and Mi J X 2019 Phys. Rev. B 99 214441
[16] Barthélemy Q, Puphal P, Zoch K M, Krellner C, Luetkens H, Baines C, Sheptyakov D, Kermarrec E, Mendels P and Bert F 2019 Phys. Rev. Mater. 3 074401
[17] Chen X H, Huang Y X, Pan Y and Mi J X 2020 J. Magn. Magn. Mater. 512 167066
[18] Zeng Z Y, Ma X Y, Wu S, Li H F, Tao Z, Lu X Y, Chen X H, Mi J X, Song S J, Cao G H, Che G W, Li K, Li G, Luo H Q, Meng Z Y and Li S L 2022 Phys. Rev. B 105 L121109
[19] Liu J, Yuan L, Li X, Li B, Zhao K, Liao H and Li Y 2022 Phys. Rev. B 105 024418
[20] Hong X, Behnami M, Yuan L, Li B, Brenig W, Büchner B, Li Y and Hess C 2022 Phys. Rev. B 106 L220406
[21] Sun W, Huang Y X, Pan Y and Mi J X 2017 Dalton Trans. 46 9535
[22] Puphal P, Zoch K M, Désor J, Bolte M and Krellner C 2018 Phys. Rev. Mater. 2 063402
[23] Fu Y, Huang L, Zhou X, Chen J, Zhang X, Chen P, Wang S, Liu C, Yu D, Li H F, Wang L and Mei J W 2021 Chin. Phys. B 30 100601
[24] Matsuhira K, Wakeshima M, Hinatsu Y and Takagi S 2011 J. Phys. Soc. Jpn. 80 094701
[25] Rousochatzakis I, Manmana S R, Läuchli A M, Normand B and Mila F 2009 Phys. Rev. B 79 214415
[26] Lee C Y, Normand B and Kao Y J 2018 Phys. Rev. B 98 224414
[27] Kumar A and Yusuf S M 2015 Phys. Rep. 556 1
[28] Wang Y, Ni S, Zhang H, Wang H, Su K, Yang D, Huang S, Huo D and Tan W 2022 Appl. Phys. A 128 839
[29] Yang A M, Sheng Y H, Farid M A, Zhang H, Lin X H, Li G B, Liu L J, Liao F H and Lin J H 2016 RSC Adv. 6 13928
[30] Kumar P, Kumar R, Pandey S, Suresh K G and Nigam A K 2014 Physica B 448 6
[31] Li Q J, Zhao Z Y, Zhou H D, Ke W P, Wang X M, Fan C, Liu X G, Chen L M, Zhao X and Sun X F 2012 Phys. Rev. B 85 174438
[1] Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2023, 32(5): 056301.
[2] A spin-based magnetic scanning microscope for in-situ strain tuning of soft matter
Zhe Ding(丁哲), Yumeng Sun(孙豫蒙), Mengqi Wang(王孟祺), Pei Yu(余佩), Ningchong Zheng(郑宁冲), Yipeng Zang(臧一鹏), Pengfei Wang(王鹏飞), Ya Wang(王亚), Yuefeng Nie(聂越峰), Fazhan Shi(石发展), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2023, 32(5): 057504.
[3] Spin reorientation in easy-plane kagome ferromagnet Li9Cr3(P2O7)3(PO4)2
Yuanhao Dong(董元浩), Ying Fu(付盈), Yixuan Liu(刘以轩), Zhanyang Hao(郝占阳), Le Wang(王乐), Cai Liu(刘才), Ke Deng(邓可), and Jiawei Mei(梅佳伟). Chin. Phys. B, 2023, 32(5): 057506.
[4] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[5] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[6] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[7] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[8] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[9] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[10] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[11] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[12] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[13] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[14] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[15] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
No Suggested Reading articles found!