Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 087703    DOI: 10.1088/1674-1056/22/8/087703
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The magnetoelectric properties of A-or B-site-doped PbVO3 films:A first-principles study

Chen Xing-Yuan (陈星源), Chen Li-Juan (陈丽娟), Zhao Yu-Jun (赵宇军)
Department of Physics and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
Abstract  We employ first-principles calculations to study the magnetic and ferroelectric properties of PbVO3 with A (XA=Ca, Sr, Bi, Ba, and La) or B (XB=Ti, Cr, Mn, Fe, Co, Ni, and Cu) site dopants, with the aim of ascertaining a large ferroelectric polarization and a long magnetic order, or even a macro ferri/ferromagnetism, which is critical to their potential applications in magnetoelectronic devices. It is found that Pb7XAV8O24 (XA=Ca, Sr, and Ba,) are inclined to maintain the spin glass and large ferroelectric polarization. The degenerated G-and C-antiferromagnetic (AFM) couplings in the ideal PbVO3 are broken up, accompanied by the loss of ferroelectric properties, when La or Bi is doped at the A site. In contrast, the above-mentioned 3d transition elements doped at the B site of PbVO3 could induce remnant magnetic moments and preserve the large ferroelectric polarization, except for Ni and Cu. The Fe or Cr at the B site clearly remove the degenerated G-and C-AFM coupling, but the nonmagnetic Ti cannot do so. For the Mn, Co, Ni, or Cu doped at the B sites, even the two-dimensional AFM ordering in PbVO3 is destabilized. The various doping effects are further discussed with inner strain and charge transfer.
Keywords:  multiferroic      magnetism      ferroelectric      doping  
Received:  21 October 2012      Revised:  26 February 2013      Accepted manuscript online: 
PACS:  77.55.Nv (Multiferroic/magnetoelectric films)  
  75.85.+t (Magnetoelectric effects, multiferroics)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174082) and the Education Foundation of Science and Technology Innovation of the Ministry of Education, China (Grant No. 708070).
Corresponding Authors:  Zhao Yu-Jun     E-mail:  zhaoyj@scut.edu.cn

Cite this article: 

Chen Xing-Yuan (陈星源), Chen Li-Juan (陈丽娟), Zhao Yu-Jun (赵宇军) The magnetoelectric properties of A-or B-site-doped PbVO3 films:A first-principles study 2013 Chin. Phys. B 22 087703

[1] Schmid H 1994 Ferroelectrics Ferroelectrics 162 317
[2] Hill N A 2000 J. Phys. Chem. B 104 6694
[3] Ramesh R and Spaldin N A 2007 Nat. Mater. 6 21
[4] Shpanchenko R V, Chernaya V V, Tsirlin A A, Chizhov P S, Sklovsky D E, Antipov E V, Khlybov E P, Pomjakushin V, Balagurov A M, Medvedeva J E, Kaul E E and Geibel C 2004 Chem. Mater. 16 3267
[5] Belik A A, Azuma M, Saito T, Shimakawa Y and Takano M 2005 Chem. Mater. 17 269
[6] Singh D J 2006 Phys. Rev. B 73 094102
[7] Martin L W, Zhan Q, Suzuki Y, Ramesh R, Chi M F, Browning N, Mizoguchi T and Kreisel J 2007 Appl. Phys. Lett. 90 062903
[8] Oka K, Yamada I, Azuma M, Takeshita S, Satoh K H, Koda A, Kadono R, Takano M and Shimakawa Y 2008 Inorg. Chem. 47 7355
[9] Kumar A, Podraza N J, Denev S, Li J, Martin L W, Chu Y H, Ramesh R, Collins R W and Gopalan V 2008 Appl. Phys. Lett. 92 231915
[10] Uratani Y, Shishidou T, Ishii F and Oguchi T 2005 Jpn. J. Appl. Phys. 44 7130
[11] Kumar A, Martin L W, Denev S, Kortright J B, Suzuki Y, Ramesh R and Gopalan V 2007 Phys. Rev. B 75 060101
[12] Tsirlin A A, Belik A A, Shpanchenko R V, Antipov E V, Takayama-Muromachi E and Rosner H 2008 Phys. Rev. B 77 092402
[13] Uratani Y, Shishidou T and Oguchi T 2009 J. Phys. Soc. Jpn. 78 084709
[14] Ju S and Cai T Y 2008 Appl. Phys. Lett. 93 251904
[15] Lawes G and Srinivasan G 2011 J. Phys. D: Appl. Phys. 44 243001
[16] Solovyev IV 2012 Phys. Rev. B 85 054420
[17] Sosnowska I, Neumaier T P and Steichele E 1982 J. Phys. C 15 4835
[18] Bai F M, Wang J L, Wuttig M, Li J F, Wang N G, Pyatakov A P, Zvezdin A K, Cross L E and Viehland D 2005 Appl. Phys. Lett. 86 32511
[19] Picozzi S and Ederer C 2009 J. Phys: Condens. Matter 21 303201
[20] Baettig P, Ederer C and Spaldin N A 2005 Phys. Rev. B 72 214105
[21] Nechache R, Harnagea C, Pignolet A, Normandin F, Veres T, Carignan L P and Menard D 2006 Appl. Phys. Lett. 89 102902
[22] Khomchenko V A, Kopcewicz M, Lopes A M L, Pogorelov Y G, Araujo J P, Vieira J M and Kholkin A L 2008 J. Phys: D: Appl. Phys. 41 102003
[23] Chang H and Zhao Y G 2011 Chin. Phys. Lett. 28 067503
[24] Ma Z Z, Li J Q, Tian Z M, Qiu Y and Yuan S L 2012 Chin. Phys. B 21 107503
[25] Khomchenko V A, Kiselev D A, Vieira J M, Jian L, Kholkin A L, Lopes A M L, Pogorelov Y G, Araujo J P and Maglione M 2008 J. Appl. Phys. 103 024105
[26] Wang D H, Goh W C, Ning M and Ong C K 2006 Appl. Phys. Lett. 88 212907
[27] Zhang S T, Zhang Y, Lu M H, Du C L, Chen Y F, Liu Z G, Zhu Y Y, Ming N B and Pan X Q 2006 Appl. Phys. Lett. 88 162901
[28] Chen X Y, Tian R Y, Wu J M, Zhao Y J, Ding H C and Duan C G 2011 J. Phys: Condens. Matter 23 326005
[29] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[30] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[31] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[32] Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467
[33] Ederer C and Spaldin N A 2006 Phys. Rev. B 74 024102
[34] Ederer C, Harris T and Kovacik R 2011 Phys. Rev. B 83 054110
[35] Kingsmith R D and Vanderbilt D 1993 Phys. Rev. B 47 1651
[36] Dean J A 1979 Lange's Handbook of Chemistry, 12th edn. (New York: McGraw-Hill) pp. 3-124
[37] Hafner J 2008 J. Comput. Chem. 29 2044
[38] Anderson P W 1959 Phys. Rev. 115 2
[39] Tsuchiya T, Katsumata T, Ohba T and Inaguma Y 2009 J. Ceram. Soc. Jpn. 117 102
[1] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[2] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[3] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[4] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[5] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[6] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[7] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[8] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[9] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[10] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[11] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[12] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[13] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[14] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[15] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
No Suggested Reading articles found!