Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 087801    DOI: 10.1088/1674-1056/22/8/087801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The low-temperature sintering and microwave dielectric properties of (Zn0.7Mg0.3)TiO3 ceramics with H3BO3

Shen Guo-Ce (沈国策), Su Hua (苏桦), Zhang Huai-Wu (张怀武), Jing Yu-Lan (荆玉兰), Tang Xiao-Li (唐晓莉)
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  The effects of the addition of H3BO3 on the microstructure, phase formation, and microwave dielectric properties of (Zn0.7Mg0.3)TiO3 ceramics sintered at temperatures ranging from 890 ℃ to 950 ℃ are investigated. H3BO3 as a sintering agent can effectively lower the sintering temperature of ZMT ceramics below 950 ℃ due to the liquid-phase effect. The microwave dielectric properties are found to strongly correlate with the amount of H3BO3. With the increase in H3BO3 content, the dielectric constant (εr) monotonically increases, but the quality factor (Q×f) reaches a maximum at 1 wt% H3BO3, and the apparent density of ZMT ceramics with H3BO3 ≥ 1 wt% gradually decreases. At 950 ℃, the ZMT ceramics with 1% H3BO3 exhibit excellent microwave dielectric properties: εr=19.8, and Q×f=43800 GHz (8.94 GHz).
Keywords:  ZMT ceramics      LTCC      H3BO3  
Received:  07 November 2012      Revised:  07 January 2013      Accepted manuscript online: 
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61171047, 51132003, 51072029, and 61271038), the Program for New Century Excellent Talents in University, and the Fund from the Science and Technology Department of Sichuan Province, China.
Corresponding Authors:  Su Hua     E-mail:  uestcsh@163.com

Cite this article: 

Shen Guo-Ce (沈国策), Su Hua (苏桦), Zhang Huai-Wu (张怀武), Jing Yu-Lan (荆玉兰), Tang Xiao-Li (唐晓莉) The low-temperature sintering and microwave dielectric properties of (Zn0.7Mg0.3)TiO3 ceramics with H3BO3 2013 Chin. Phys. B 22 087801

[1] Won Woo Cho, Ken-ichi Kakimoto and Hitoshi Ohsato 2005 Mat. Sci. Eng. B 48 121
[2] Barnwell P, Zhang W, Lebowitz J, Jones K, NMacDonal N, Free C and Tian Z 2000 International Symposium on Microelectronics, IMAPS, September 20-22, 2000, Boston, MA, USA, p. 659
[3] Sheen J W 1999 IEEE Trans. Microwave Theory 47 1883
[4] Cheng P F, Li S T, Li J Y, Ding C and Yang Y 2012 Chin. Phys. B 21 097201
[5] Zhang C H, Xu Z, Gao J J, Zhu C J and Yao X 2011 Chin. Phys. B 21 097702
[6] Sun Q, Li Y D, Xu J J, Liu S M, Zhang G Y, Zhang X Z and Zhang G Q 1998 Chin. Phys. Lett. 15 348
[7] Jiang R Q, Hu X R and Fang J X 1996 Chin. Phys. Lett. 13 937
[8] Kim H T, Kim S H, Nahm S and Byun J D 1999 J. Am. Ceram. Soc. 82 3043
[9] Golovchanshi A, Kim H T and Kim Y H 1998 J. Korean Phys. Soc. 32 S1167
[10] Wu Y Y, Wang X H and Li L T 2010 Chin. Phys. B 19 037701
[11] Lu S Z and Yang Q H 2012 Chin. Phys. B 21 047801
[12] Kim H T, Kim S H, Nahm S and Byun J D 1999 J. Am. Ceram. Soc. 82 3043
[13] Kim H T, Kim S H, Nahm S and Byun J D 1998 J. Am. Ceram. Soc. 32 S159
[14] Kim H T, Kim S H, Nahm S and Byun J D 1998 J. Am. Ceram. Soc. 32 S346
[15] Kim H T, Kim S H, Nahm S and Byun J D 1999 J. Am. Ceram. Soc. 82 3476
[16] Li B, Tang B, Zhang S R and Jiang H M 2010 J. Mater. Sci. 45 6461
[17] Li B, Tang B, Zhang S R and Jiang H M 2009 J. Mater. Sci. 44 4993
[18] Chaouchi A, Aliouat M, Marinel S, d' Astorg S and Bourahla H 2007 Ceramics International 33 245
[19] Zhang Q L, Yang H, Zou J L and Wang H P 2005 Mater. Lett. 59 880
[20] Wang Y R, Wang S F and Lin Y M 2005 Ceramics International 31 905
[21] Chaouchi A, Aliouat M, Marinel S, Astorg S and Bourahla H 2007 Ceram Int. 33 245
[22] Liu X, Gao F, Zhao L and Tian C 2007 J. Alloys Compd. 436 285
[23] Hsieh M L, Chen L S, Wang S M, Sun C H, Weng M H, Houng M P and Fu S L 2005 Jpn. J. Appl. Phys. 44 5045
[24] Lee Y C and Lee W H 2005 Jpn. J. Appl. Phys. 44 1838
[25] Lee Y C, Lee W H and Shiao F T 2004 Jpn. J. Appl. Phys. 43 7596
[26] Chai Y L, Chang Y S, Hsiao Y J and Lian Y C 2008 Mater. Res. Bull. 43 257
[27] Li B, Zhou X H and Zhang S R 2009 J. Mater. Sci. Mater. Elec. 20 1123
[1] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[2] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[3] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[4] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[5] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[6] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[7] Goos-Hänchen and Imbert-Fedorov shifts in tilted Weyl semimetals
Shuo-Qing Liu(刘硕卿), Yi-Fei Song(宋益飞), Ting Wan(万婷), You-Gang Ke(柯友刚), and Zhao-Ming Luo(罗朝明). Chin. Phys. B, 2022, 31(7): 074101.
[8] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[9] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
[10] Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface
Jingyu Han(韩靖宇), Jiahao Ding(丁甲豪), Hongyu Wu(吴宏宇), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2022, 31(3): 034601.
[11] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[12] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[13] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[14] Synthesis of flower-like WS2 by chemical vapor deposition
Jin-Zi Ding(丁金姿), Wei Ren(任卫), Ai-Ling Feng(冯爱玲), Yao Wang(王垚), Hao-Sen Qiao(乔浩森), Yu-Xin Jia(贾煜欣), Shuang-Xiong Ma(马双雄), and Bo-Yu Zhang(张博宇). Chin. Phys. B, 2021, 30(12): 126201.
[15] Solar broadband metamaterial perfect absorber based on dielectric resonant structure of Ge cone array and InAs film
Kuang-Ling Guo(郭匡灵), Hou-Hong Chen(陈厚宏), Xiao-Ming Huang(黄晓明), Tian-Hui Hu(胡天惠), and Hai-Ying Liu(刘海英). Chin. Phys. B, 2021, 30(11): 114201.
No Suggested Reading articles found!