ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Numerical analysis of photonic crystal fiber with chalcogenide core tellurite cladding composite microstructure |
Liu Shuo (刘硕), Li Shu-Guang (李曙光) |
Key Laboratory of Metastable Materials Science and Technology, College of Science, Yanshan University, Qinhuangdao 066004, China |
|
|
Abstract Kinds of photonic crystal fibers with chalcogenide core tellurite cladding composite microstructure are proposed. The multi-core photonic crystal fiber can reach the higher nonlinearity coefficient and the larger effective mode area. The small single-core photonic crystal fiber has a very high nonlinearity coefficient. At the wavelength λ=0.8 μm, the nonlinearity coefficient can reach 31.37053 W-1·m-1, at the wavelength λ=1.55 μm, the nonlinearity coefficient is 11.19686 W-1·m-1.
|
Received: 17 August 2012
Revised: 28 November 2012
Accepted manuscript online:
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
|
42.70.Mp
|
(Nonlinear optical crystals)
|
|
42.81.-i
|
(Fiber optics)
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 61178026 and 60978028), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091333110010), and the Natural Science Foundation of Hebei Province, China (Grant No. E2012203035). |
Corresponding Authors:
Li Shu-Guang
E-mail: shuguangli@ysu.edu.cn
|
Cite this article:
Liu Shuo (刘硕), Li Shu-Guang (李曙光) Numerical analysis of photonic crystal fiber with chalcogenide core tellurite cladding composite microstructure 2013 Chin. Phys. B 22 074206
|
[1] |
Xiao L, Zhang W, Huang Y D and Peng J D 2008 Chin. Phys. B 17 995
|
[2] |
Wang W, Hou L T, Liu Z L and Zhou G Y 2009 Chin. Phys. Lett. 26 114202
|
[3] |
Ebendorff-Heidepriem H, Petropoulos P, Asimakis S, Finazzi V, Moore R, Frampton K, Koizumi F, Richardson D and Monro T 2004 Opt. Express 12 5082
|
[4] |
Ademgil H and Haxha S 2009 Opt. Commun. 282 2831
|
[5] |
Razzak S M A and Namihira Y 2011 Optik 122 1084
|
[6] |
Zhang C, Zhang Y Y, Hu M L, Wang S J, Song Y J, Chai L and Wang C Y 2012 Opt. Commun. 285 2715
|
[7] |
Li P X, Zhang X X, Liu Z and Chi J J 2011 Chin. Phys. Lett. 28 84206
|
[8] |
Limpert J, Schreiber T, Nolte S, Zellmer H, Tunnermann T, Iliew R, Lederer F, Broeng J, Vienne G, Petersson A and Jakobsen C 2003 Opt. Express 11 818
|
[9] |
Chen M Y, Sun B, Zhang Y K, Tong Y Q and Zhou J 2010 Opt. Commun. 283 3153
|
[10] |
Vogel M M, Abdou Ahmed M, Voss A and Graf T 2009 Opt. Lett. 34 2876
|
[11] |
Chen G, Jiang Z W, Peng J G, Li H Q, Dai N L and Li J Y 2012 Acta Phys. Sin. 61 144206 (in Chinese)
|
[12] |
Zhang X, Hu M L, Song Y L, Chai L and Wang Q Y 2010 Acta Phys. Sin. 59 1863 (in Chinese)
|
[13] |
Husakou A 2003 Appl. Phys. Lett. 83 3867
|
[14] |
Fang X H, Hu M L, Liu B W, Chai L, Wang Q Y and Zheltikov A M 2010 Opt. Lett. 35 2326
|
[15] |
Fang X H, Hu M L, Song Y J, Xie C, Chai L, Wang Q Y 2011 Acta Phys. Sin. 60 64208 (in Chinese)
|
[16] |
Manili G, Modotto D, Minoni U, Wabnitz S, Angelis C D, Town G, Tonello A and Couderc V 2011 Opt. Fiber Technol. 17 160
|
[17] |
Imamura K, Tsuchida Y, Mukasa K, Sugizaki R, Saitoh K and Koshiba M 2011 Opt. Express 19 10595
|
[18] |
Zheng Y B, Yao J Q, Zhang Lei, Wang Y, Wen W Q, Jing L and Di Z G 2012 Chin. Phys. Lett. 29 24203
|
[19] |
Xie D and Wen J G 2011 Adv. Mater. Res. 308 517
|
[20] |
Chaudhari C 2010 Proc. SPIE 7728 772810
|
[21] |
Chaudhari C, Liao M, Suzuki T and Ohishi Y 2012 J. Lightwave Technol. 30
|
[22] |
Liao M, Chaudhari C, Qin G, Yan X, Kito C, Suzuki T, Ohishi Y, Matsumoto M and Misumi T 2009 Opt. Express 17 21608
|
[23] |
Liao M, Yan X, Qin G, Chaudhari C and Yasutake O T S 2010 J. Non-Cryst. Solids 356 2613
|
[24] |
Lamont M R, Luther Davies B, Choi D Y, Madden S and Eggleton B J 2008 Opt. Express 16 14938
|
[25] |
Zhou H S, Li S G, Fu B, Yao Y Y and Zhang L 2010 Chin. Phys. Lett. 27 14208
|
[26] |
Cheng T L, Cai L, Hu M L, Li Y F and Wang Q Y 2010 Chin. Phys. Lett. 27 114210
|
[27] |
Fang X H, Hu M L, Li Y F, Chai L and Wang Q Y 2011 J. Lightwave Technol. 29 3428
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|