Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 074206    DOI: 10.1088/1674-1056/22/7/074206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Numerical analysis of photonic crystal fiber with chalcogenide core tellurite cladding composite microstructure

Liu Shuo (刘硕), Li Shu-Guang (李曙光)
Key Laboratory of Metastable Materials Science and Technology, College of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  Kinds of photonic crystal fibers with chalcogenide core tellurite cladding composite microstructure are proposed. The multi-core photonic crystal fiber can reach the higher nonlinearity coefficient and the larger effective mode area. The small single-core photonic crystal fiber has a very high nonlinearity coefficient. At the wavelength λ=0.8 μm, the nonlinearity coefficient can reach 31.37053 W-1·m-1, at the wavelength λ=1.55 μm, the nonlinearity coefficient is 11.19686 W-1·m-1.
Keywords:  multi-core photonic crystal fiber      effective mode area      nonlinearity coefficient      dispersion  
Received:  17 August 2012      Revised:  28 November 2012      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  42.70.Mp (Nonlinear optical crystals)  
  42.81.-i (Fiber optics)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 61178026 and 60978028), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091333110010), and the Natural Science Foundation of Hebei Province, China (Grant No. E2012203035).
Corresponding Authors:  Li Shu-Guang     E-mail:  shuguangli@ysu.edu.cn

Cite this article: 

Liu Shuo (刘硕), Li Shu-Guang (李曙光) Numerical analysis of photonic crystal fiber with chalcogenide core tellurite cladding composite microstructure 2013 Chin. Phys. B 22 074206

[1] Xiao L, Zhang W, Huang Y D and Peng J D 2008 Chin. Phys. B 17 995
[2] Wang W, Hou L T, Liu Z L and Zhou G Y 2009 Chin. Phys. Lett. 26 114202
[3] Ebendorff-Heidepriem H, Petropoulos P, Asimakis S, Finazzi V, Moore R, Frampton K, Koizumi F, Richardson D and Monro T 2004 Opt. Express 12 5082
[4] Ademgil H and Haxha S 2009 Opt. Commun. 282 2831
[5] Razzak S M A and Namihira Y 2011 Optik 122 1084
[6] Zhang C, Zhang Y Y, Hu M L, Wang S J, Song Y J, Chai L and Wang C Y 2012 Opt. Commun. 285 2715
[7] Li P X, Zhang X X, Liu Z and Chi J J 2011 Chin. Phys. Lett. 28 84206
[8] Limpert J, Schreiber T, Nolte S, Zellmer H, Tunnermann T, Iliew R, Lederer F, Broeng J, Vienne G, Petersson A and Jakobsen C 2003 Opt. Express 11 818
[9] Chen M Y, Sun B, Zhang Y K, Tong Y Q and Zhou J 2010 Opt. Commun. 283 3153
[10] Vogel M M, Abdou Ahmed M, Voss A and Graf T 2009 Opt. Lett. 34 2876
[11] Chen G, Jiang Z W, Peng J G, Li H Q, Dai N L and Li J Y 2012 Acta Phys. Sin. 61 144206 (in Chinese)
[12] Zhang X, Hu M L, Song Y L, Chai L and Wang Q Y 2010 Acta Phys. Sin. 59 1863 (in Chinese)
[13] Husakou A 2003 Appl. Phys. Lett. 83 3867
[14] Fang X H, Hu M L, Liu B W, Chai L, Wang Q Y and Zheltikov A M 2010 Opt. Lett. 35 2326
[15] Fang X H, Hu M L, Song Y J, Xie C, Chai L, Wang Q Y 2011 Acta Phys. Sin. 60 64208 (in Chinese)
[16] Manili G, Modotto D, Minoni U, Wabnitz S, Angelis C D, Town G, Tonello A and Couderc V 2011 Opt. Fiber Technol. 17 160
[17] Imamura K, Tsuchida Y, Mukasa K, Sugizaki R, Saitoh K and Koshiba M 2011 Opt. Express 19 10595
[18] Zheng Y B, Yao J Q, Zhang Lei, Wang Y, Wen W Q, Jing L and Di Z G 2012 Chin. Phys. Lett. 29 24203
[19] Xie D and Wen J G 2011 Adv. Mater. Res. 308 517
[20] Chaudhari C 2010 Proc. SPIE 7728 772810
[21] Chaudhari C, Liao M, Suzuki T and Ohishi Y 2012 J. Lightwave Technol. 30
[22] Liao M, Chaudhari C, Qin G, Yan X, Kito C, Suzuki T, Ohishi Y, Matsumoto M and Misumi T 2009 Opt. Express 17 21608
[23] Liao M, Yan X, Qin G, Chaudhari C and Yasutake O T S 2010 J. Non-Cryst. Solids 356 2613
[24] Lamont M R, Luther Davies B, Choi D Y, Madden S and Eggleton B J 2008 Opt. Express 16 14938
[25] Zhou H S, Li S G, Fu B, Yao Y Y and Zhang L 2010 Chin. Phys. Lett. 27 14208
[26] Cheng T L, Cai L, Hu M L, Li Y F and Wang Q Y 2010 Chin. Phys. Lett. 27 114210
[27] Fang X H, Hu M L, Li Y F, Chai L and Wang Q Y 2011 J. Lightwave Technol. 29 3428
[1] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[2] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[3] Kinetic Alfvén waves in a deuterium-tritium fusion plasma with slowing-down distributed α-particles
Fei-Fei Lu(路飞飞) and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(3): 035201.
[4] Spectral polarization-encoding of broadband laser pulses by optical rotatory dispersion and its applications in spectral manipulation
Xiaowei Lu(陆小微), Congying Wang(王聪颖), Xuanke Zeng(曾选科), Jiahe Lin(林家和), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Huangcheng Shangguan(上官煌城), Zhenkuan Chen(陈振宽), Shixiang Xu(徐世祥), and Jingzhen Li(李景镇). Chin. Phys. B, 2021, 30(7): 077801.
[5] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[6] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[7] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[8] Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band
Xin-Tong Zhang(张欣桐). Chin. Phys. B, 2021, 30(1): 014205.
[9] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[10] Graphene's photonic and optoelectronic properties-A review
A J Wirth-Lima, P P Alves-Sousa, W Bezerra-Fraga. Chin. Phys. B, 2020, 29(3): 037801.
[11] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[12] Zitterbewegung of Dirac quasiparticles emerged in a Su-Schrieffer–Heeger lattice
Yue Hu(胡玥), Zheng-Xin Guo(郭政鑫), Ze-Ming Zhong(钟泽明), and Zhi Li(李志). Chin. Phys. B, 2020, 29(11): 110302.
[13] Variable optical chirality in atomic assisted microcavity
Hao Zhang(张浩), Wen-Xiu Li (李文秀), Peng Han(韩鹏), Xiao-Yang Chang(常晓阳), Shuo Jiang(蒋硕), An-Ping Huang(黄安平), and Zhi-Song Xiao(肖志松). Chin. Phys. B, 2020, 29(11): 114207.
[14] Study on dispersion characteristics of terahertz waves in helical waveguides
Jin-Hai Sun(孙金海), Shao-Hua Zhang(张少华), Xu-Tao Zhang(张旭涛), He Cai(蔡禾), Yong-Qiang Liu(刘永强), and Zeng-Ming Chao(巢增明)$. Chin. Phys. B, 2020, 29(11): 114301.
[15] Exciton dynamics in different aromatic hydrocarbon systems
Milica Rutonjski†, Petar Mali, Slobodan Rado\v sevi\'c, Sonja Gombar, Milan Panti\'c, and Milica Pavkov-Hrvojevi\'c. Chin. Phys. B, 2020, 29(10): 107103.
No Suggested Reading articles found!