Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 107103    DOI: 10.1088/1674-1056/aba2de
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Exciton dynamics in different aromatic hydrocarbon systems

Milica Rutonjski†, Petar Mali, Slobodan Rado\v sevi\'c, Sonja Gombar, Milan Panti\'c, and Milica Pavkov-Hrvojevi\'c
1 Department of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
Abstract  

The exciton dispersion is examined in the case of four selected prototypical molecular solids: pentacene, tetracene, picene, and chrysene. The model parameters are determined by fitting to experimental data obtained by inelastic electron scattering. Within the picture that relies on Frenkel-type excitons we obtain that theoretical dispersion curves along different directions in the Brillouin zone are in good agreement with the experimental data, suggesting that the influence of charge-transfer excitons on exciton dispersion of the analyzed organic solids is not as large as proposed. In reciprocal space directions where Davydov splitting is observed we employ the upgraded version of Hamiltonian used in Materials 11, 2219 (2018).

Keywords:  aromatic hydrocarbons      exciton dispersion      Heisenberg model      Davydov splitting  
Received:  14 April 2020      Revised:  29 June 2020      Accepted manuscript online:  06 July 2020
PACS:  71.35.-y (Excitons and related phenomena)  
  71.35.Aa (Frenkel excitons and self-trapped excitons)  
  71.35.Cc (Intrinsic properties of excitons; optical absorption spectra)  
  75.10.Dg (Crystal-field theory and spin Hamiltonians)  
Corresponding Authors:  Corresponding author. E-mail: milica.rutonjski@df.uns.ac.rs   
About author: 
†Corresponding author. E-mail: milica.rutonjski@df.uns.ac.rs
* Project supported by the Serbian Ministry of Education and Science (Grant No. OI-171009) and the Provincial Secretariat for High Education and Scientific Research of Vojvodina (Grant No. APV 114-451-2201).

Cite this article: 

Milica Rutonjski†, Petar Mali, Slobodan Rado\v sevi\'c, Sonja Gombar, Milan Panti\'c, and Milica Pavkov-Hrvojevi\'c Exciton dynamics in different aromatic hydrocarbon systems 2020 Chin. Phys. B 29 107103

a b γ/(°) References
Pentacene 6.27 7.78 87.8 [40]
Tetracene 6.06 7.84 85.8 [41]
Picene 8.48 6.15 90 [11,18]
Chrysene 8.39 6.20 90 [42]
Table 1.  

Lattice constants and angles for the unit cells of studied structures.

Fig. 1.  

Schematic presentation of the analyzed crystal structures: pentacene and tetracene (sketch in color) vs picene and chrysene (gray-scale sketch). Each set of lattice vectors {a, −a}, {b, −b} and $ \left\{\displaystyle \frac{{\boldsymbol{a}}+{\boldsymbol{b}}}{2},\displaystyle \frac{-{\boldsymbol{a}}+{\boldsymbol{b}}}{2},-\displaystyle \frac{{\boldsymbol{a}}+{\boldsymbol{b}}}{2},-\displaystyle \frac{-{\boldsymbol{a}}+{\boldsymbol{b}}}{2}\right\} $ corresponds to a pair of exchange integrals (see text).

Fig. 2.  

Exciton dispersion in pentacene along three different directions in reciprocal lattice at T = 20 K. Experimental data are taken from Ref. [12]. Theoretical curves are obtained for Δ = 1.915 eV, $ {I}_{{1}_{{\rm{A}}}}^{x}=3.2\ {\rm{meV}} $ , $ {I}_{{2}_{{\rm{A}}}}^{x}=2.2\ {\rm{meV}} $ , $ {I}_{{3}_{{\rm{A}}}}^{x}=38.2\ {\rm{meV}} $ .

Fig. 3.  

Exciton dispersion in pentacene along four different directions in reciprocal lattice at T = 300 K. Experimental data are taken from Ref. [10]. Theoretical curves are obtained for the exchange integral set from Fig. 2 and the gap value Δ = 1.83 eV.

Fig. 4.  

Exciton dispersion in tetracene along two different directions in reciprocal lattice. Experimental data at T = 20 K are taken from Ref. [14]. Theoretical curves are obtained for Δ = 2.405 eV, $ {I}_{{1}_{{\rm{A}}}}^{x}=5.7\ {\rm{meV}} $ , $ {I}_{{2}_{{\rm{A}}}}^{x}=0.4\ {\rm{meV}} $ , $ {I}_{{3}_{{\rm{A}}}}^{x}=19.8\ {\rm{meV}} $ .

Eg/eV Δ/eV $ |{I}_{3}^{x}|/{\rm{meV}} $
Pentacene 2.2[43,44] 1.915 38.2
Tetracene 3.3[43,44] 2.405 19.8
Picene 4.05[45,46] 3.249 2.8
Chrysene 4.2[46] 3.4 2.8
Table 2.  

Transport energy gaps (Eg) for studied structures vs calculated optical gaps (Δ) together with the corresponding $ |{I}_{3}^{x}| $ values (at T = 20 K).

Fig. 5.  

The 3D plot of exciton dispersion in pentacene at T = 20 K. Parameter set is the same as in Fig. 2.

Fig. 6.  

Exciton dispersion in picene along three different directions in reciprocal lattice. Experimental data at T = 20 K are taken from Ref. [15]. Theoretical curves are obtained for Δ = 3.249 eV, $ {I}_{{1}_{{\rm{A}}}}^{x}=2.8\ {\rm{meV}} $ , $ {I}_{{2}_{{\rm{A}}}}^{x}=2\ {\rm{meV}} $ , $ {I}_{{3}_{{\rm{A}}}}^{x}=2.8\ {\rm{meV}} $ .

Fig. 7.  

Exciton dispersion in chrysene along three different directions in reciprocal lattice. Experimental data at T = 20 K are taken from Ref. [15]. Theoretical curves are obtained for Δ = 3.4 eV, $ {I}_{{1}_{{\rm{A}}}}^{x}=2.8\ {\rm{meV}} $ , $ {I}_{{2}_{{\rm{A}}}}^{x}=2\ {\rm{meV}} $ , $ {I}_{{3}_{{\rm{A}}}}^{x}=2.8\ {\rm{meV}} $ .

Fig. 8.  

The 3D plot of exciton dispersion in picene, obtained with the parameters from Fig. 6.

[1]
Gershenson M, Podzorov V, Morpurgo A 2006 Rev. Mod. Phys. 78 973 DOI: 10.1103/RevModPhys.78.973
[2]
Peumans P, Uchida S, Forrest S R 2011 Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group Singapore World Scientific 94 98
[3]
Baldo M A, O’brien D, You Y, Shoustikov A, Sibley S, Thompson M, Forrest S R 1998 Nature 395 151 DOI: 10.1038/25954
[4]
Forrest S R 2004 Nature 428 911 DOI: 10.1038/nature02498
[5]
Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nat. Mater. 4 864 DOI: 10.1038/nmat1500
[6]
Dongol M, El-Nahass M M, El-Denglawey A, Abuelwafa A A, Soga T 2016 Chin. Phys. B 25 067201 DOI: 10.1088/1674-1056/25/6/067201
[7]
Wu H Q, Linghu C Y, Lü H M, Qian H 2013 Chin. Phys. B 22 098106 DOI: 10.1088/1674-1056/22/9/098106
[8]
Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y 2010 Nature 464 76 DOI: 10.1038/nature08859
[9]
Knupfer M, Berger H 2006 Chem. Phys. 325 92 DOI: 10.1016/j.chemphys.2005.06.044
[10]
Schuster R, Knupfer M, Berger H 2007 Phys. Rev. Lett. 98 037402 DOI: 10.1103/PhysRevLett.98.037402
[11]
Roth F, Mahns B, Büchner B, Knupfer M 2011 Phys. Rev. B 83 165436 DOI: 10.1103/PhysRevB.83.165436
[12]
Roth F, Schuster R, König A, Knupfer M, Berger H 2012 J. Chem. Phys. 136 204708 DOI: 10.1063/1.4723812
[13]
Roth F, Mahns B, Hampel S, Nohr M, Berger H, Büchner B, Knupfer M 2013 Eur. Phys. J. B 86 66 DOI: 10.1140/epjb/e2012-30592-1
[14]
Roth F, Nohr M, Hampel S, Knupfer M 2015 Europhys. Lett. 112 37004 DOI: 10.1209/0295-5075/112/37004
[15]
Roth F, Knupfer M 2015 J. Electron. Spectrosc. 204 23 DOI: 10.1016/j.elspec.2015.02.004
[16]
Cudazzo P, Gatti M, Rubio A 2012 Phys. Rev. B 86 195307 DOI: 10.1103/PhysRevB.86.195307
[17]
Cudazzo P, Gatti M, Rubio A, Sottile F 2013 Phys. Rev. B 88 195152 DOI: 10.1103/PhysRevB.88.195152
[18]
Cudazzo P, Sottile F, Rubio A, Gatti M 2015 J. Phys.: Condens. Matter 27 113204 DOI: 10.1088/0953-8984/27/11/113204
[19]
Kronik L, Neaton J B 2016 Annu. Rev. Phys. Chem. 67 587 DOI: 10.1146/annurev-physchem-040214-121351
[20]
Sharifzadeh S, Darancet P, Kronik L, Neaton J B 2013 J. Phys. Chem. Lett. 4 2197 DOI: 10.1021/jz401069f
[21]
Japahuge A, Zeng T 2018 ChemPlusChem. 83 146 DOI: 10.1002/cplu.201700489
[22]
Zang H, Zhao Y, Liang W 2017 J. Phys. Chem. Lett. 8 5105 DOI: 10.1021/acs.jpclett.7b01996
[23]
Gombar S, Mali P, Pantić M, Pavkov-Hrvojević M, Radošević S 2018 Materials 11 2219 DOI: 10.3390/ma11112219
[24]
Davydov A S 1964 Sov. Phys. Usp. 7 145 DOI: 10.1070/PU1964v007n02ABEH003659
[25]
Agranovich V 2008 Excitations in Organic Solids New York Oxford University Press 94 102
[26]
Agranovich V, Toshich B 1968 Sov. Phys. JETP 26 104
[27]
Tyablikov S V 1967 Methods in the Quantum Theory of Magnetism New York Springer Science & Business Media 270
[28]
Fröbrich P, Kuntz P 2006 Phys. Rep. 432 223 DOI: 10.1016/j.physrep.2006.07.002
[29]
Auerbach A 2012 Interacting Electrons and Quantum Magnetism Springer Science & Business Media 113 126
[30]
Manousakis E 1991 Rev. Mod. Phys. 63 1 DOI: 10.1103/RevModPhys.63.1
[31]
Nolting W, Ramakanth A 2009 Quantum Theory of Magnetism Berlin Springer-Verlag 273 316
[32]
Sandwik A W, Kurkijärvi J 1991 Phys. Rev. B 43 5950 DOI: 10.1103/PhysRevB.43.5950
[33]
Pantić M R, Kapor D V, Radošević S M, Mali P M 2014 Solid State Commun. 182 55 DOI: 10.1016/j.ssc.2013.12.007
[34]
Hofmann C P 1999 Phys. Rev. B 60 388 DOI: 10.1103/PhysRevB.60.388
[35]
Hofmann C P 2012 Phys. Rev. B 86 054409 DOI: 10.1103/PhysRevB.86.054409
[36]
Zheng R, Liu B G 2012 Chin. Phys. B 21 116401 DOI: 10.1088/1674-1056/21/11/116401
[37]
Radošević S M, Pantić M R, Pavkov-Hrvojević M V, Kapor D V 2013 Ann. Phys. 399 382
[38]
Radošević S M 2015 Ann. Phys. 362 336 DOI: 10.1016/j.aop.2015.08.003
[39]
Stehr V, Pfister J, Fink R F, Engels B, Deibel C 2011 Phys. Rev. B 83 155208 DOI: 10.1103/PhysRevB.83.155208
[40]
Cornil J, Calbert J P, Brédas J L 2001 J. Am. Chem. Soc. 123 1250 DOI: 10.1021/ja005700i
[41]
Holmes D, Kumaraswamy S, Matzger A J, Vollhardt K P C 1999 Chem. Eur. J. 5 3399 DOI: 10.1002/(SICI)1521-3765(19991105)5:11<3399::AID-CHEM3399>3.0.CO;2-V
[42]
Roth F, Mahns B, Schönfelder R, Hampel S, Nohr M, Büchner B, Knupfer M 2012 J. Chem. Phys. 137 114508 DOI: 10.1063/1.4753999
[43]
Amy F, Chan C, Kahn A 2005 Org. Electron. 6 85 DOI: 10.1016/j.orgel.2005.03.003
[44]
Sato N, Seki K, Inokuchi H 1981 J. Chem. Soc. Faraday Trans. 77 1621 DOI: 10.1039/f29817701621
[45]
Roth F, Gatti M, Cudazzo P, Grobosch M, Mahns B, Büchner B, Rubio A, Knupfer M 2010 New J. Phys. 12 103036 DOI: 10.1088/1367-2630/12/10/103036
[46]
Sato N, Inokuchi H, Silinsh E A 1987 Chem. Phys. 115 269 DOI: 10.1016/0301-0104(87)80041-1
[47]
Läuchli A, Mila F, Penc K 2006 Phys. Rev. Lett. 97 087205 DOI: 10.1103/PhysRevLett.97.087205
[48]
Passell L, Dietrich O W, Als-Nielsen 1976 Phys. Rev. B 14 4897 DOI: 10.1103/PhysRevB.14.4897
[49]
Dietrich O W, Als-Nielsen J, Passell L 1976 Phys. Rev. B 14 4923 DOI: 10.1103/PhysRevB.14.4923
[50]
Radošević S, Pavkov-Hrvojević M, Pantić M, Rutonjski M, Kapor D, Škrinjar M 2009 Eur. Phys. J. B 68 511 DOI: 10.1140/epjb/e2009-00127-2
[1] Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J1-J2 Heisenberg model
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2022, 31(8): 080203.
[2] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[3] Magnetic excitations of diagonally coupled checkerboards
Tingting Yan(颜婷婷), Shangjian Jin(金尚健), Zijian Xiong(熊梓健), Jun Li(李军), and Dao-Xin Yao(姚道新). Chin. Phys. B, 2021, 30(10): 107505.
[4] Lifshitz transition in triangular lattice Kondo-Heisenberg model
Lan Zhang(张欄), Yin Zhong(钟寅), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 077102.
[5] Quantum steering in Heisenberg models with Dzyaloshinskii-Moriya interactions
Hui-Zhen Li(李慧贞), Rong-Sheng Han(韩榕生), Ye-Qi Zhang(张业奇), Liang Chen(陈亮). Chin. Phys. B, 2018, 27(12): 120304.
[6] Quantum correlation dynamics in a two-qubit Heisenberg XYZ model with decoherence
Yang Guo-Hui (杨国晖), Zhang Bing-Bing (张冰冰), Li Lei (李磊). Chin. Phys. B, 2015, 24(6): 060302.
[7] Quantum correlations in a two-qubit anisotropic Heisenberg XYZ chain with uniform magnetic field
Li Lei (李磊), Yang Guo-Hui (杨国晖). Chin. Phys. B, 2014, 23(7): 070306.
[8] A thermal entangled quantum refrigerator based on a two-qubit Heisenberg model with Dzyaloshinskii-Moriya interaction in an external magnetic field
Wang Hao (汪浩), Wu Guo-Xing (吴国兴). Chin. Phys. B, 2013, 22(5): 050512.
[9] Entanglement dynamics of two qubits coupled by Heisenberg XY interaction under a nonuniform magnetic field in a spin bath
Zhou Feng-Xue(周凤雪), Zhang Li-Da(张理达), Qi Yi-Hong(祁义红), Niu Yue-Ping(钮月萍), Zhang Jing-Tao(张敬涛), and Gong Shang-Qing(龚尚庆) . Chin. Phys. B, 2011, 20(8): 080302.
[10] Thermal quantum discord in Heisenberg models with Dzyaloshinski–Moriya interaction
Wang Lin-Cheng(王林成), Yan Jun-Yan(闫俊彦), and Yi Xue-Xi(衣学喜) . Chin. Phys. B, 2011, 20(4): 040305.
[11] Implementation of positive-operator-value measurements for single spin qubit via Heisenberg model
Cheng Liu-Yong(程留永), Shao Xiao-Qiang(邵晓强), Zhang Shou(张寿), and Yeon Kyu-Hwang. Chin. Phys. B, 2010, 19(9): 090311.
[12] Entanglement evolution in an anisotropic two-qubit Heisenberg XYZ model with Dzyaloshinskii-Moriya interaction
Chen Tao(陈涛), Huang Yan-Xia(黄燕霞), Shan Chuan-Jia(单传家), Li Jin-Xing(李金星), Liu Ji-Bing(刘继兵), and Liu Tang-Kun(刘堂昆). Chin. Phys. B, 2010, 19(5): 050302.
[13] Pairwise thermal entanglement in a three-qubit Heisenberg XX model with a nonuniform magnetic field and Dzyaloshinski–Moriya interaction
Ren Jin-Zhong(任金忠), Shao Xiao-Qiang(邵晓强), Zhang Shou(张寿), and Yeon Kyu-Hwang. Chin. Phys. B, 2010, 19(10): 100307.
[14] Tunable thermal entanglement in an effective spin-star system using coupled microcavities
Yang Wan-Li(杨万里), Wei Hua(魏华), Feng Mang(冯芒), and An Jun-Hong(安钧鸿). Chin. Phys. B, 2009, 18(9): 3677-3686.
[15] Effects of Dzyaloshinski--Moriya interaction and intrinsic decoherence on teleportation via a two-qubit Heisenberg XYZ model
Hu Xiao-Mian(胡小勉) and Liu Jin-Ming(刘金明). Chin. Phys. B, 2009, 18(2): 411-417.
No Suggested Reading articles found!