Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 114301    DOI: 10.1088/1674-1056/aba098

Study on dispersion characteristics of terahertz waves in helical waveguides

Jin-Hai Sun(孙金海)1, †, Shao-Hua Zhang(张少华)2, Xu-Tao Zhang(张旭涛)1, He Cai(蔡禾)1, Yong-Qiang Liu(刘永强)1, and Zeng-Ming Chao(巢增明)1$
1 Science and Technology on Electromagnetic Scattering Laboratory, Beijing 100854, China
2 China Aerospace System Engineering Corporation, Beijing 100070, China

Corresponding to the atmospheric transmission windows of the electromagnetic spectrum in the low terahertz range, the mode coupling and dispersion characteristics of two helically corrugated waveguides (HCW) in the frequency ranges of 90 GHz–100 GHz and 260 GHz–265 GHz are studied. Through analytic calculations and numerical simulations, dispersion curves and structural parameters of the two frequency ranges waveguides are obtained. A novel method was proposed to obtain the dispersion of the HCW from the eigenwave solution using a periodic boundary condition. The HCW in a frequency range of 90 GHz–100 GHz was fabricated and its dispersion performance was measured. By comparing the measured results with the theoretical and the simulated results, the validity of the analytical and simulation method is verified. Limited to our machining capability, the dispersion of the 260 GHz–265 GHz HCW was only simulated and calculated and it was found that the results agree well with each other.

Keywords:  coupling coefficient      dispersion curves      gyrotron traveling wave tube (gyro-TWT)      helical waveguide  
Received:  28 May 2020      Revised:  22 June 2020      Accepted manuscript online:  29 June 2020
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Jin-Hai Sun(孙金海), Shao-Hua Zhang(张少华), Xu-Tao Zhang(张旭涛), He Cai(蔡禾), Yong-Qiang Liu(刘永强), and Zeng-Ming Chao(巢增明)$ Study on dispersion characteristics of terahertz waves in helical waveguides 2020 Chin. Phys. B 29 114301

Fig. 1.  

Dispersion of the 90 GHz–100 GHz HCW, the black curve is theoretically calculated result, the light blue circle is the simulation result using CST Microwave Studio.

Fig. 2.  

Electric field pattern of the coupling electromagnetic mode.

Fig. 3.  

Dispersion of the 260 GHz–265 GHz HCW, the black curve is theoretically calculated result, and the light blue circle is the simulated result using CST Microwave Studio.

Fig. 4.  

A picture of 90 GHz–100 GHz HCW.

Fig. 5.  

Experimental setup of dispersion characteristics of 90 GHz–100 GHz HCW.

Fig. 6.  

Schematic diagram of the setup used in the dispersion measurement.

Fig. 7.  

Schematic diagram of short axis position of the circular polarizers to produce (a) the right-handed circular wave and (b) the left-handed circular wave.

Fig. 8.  

Dispersion curves of the 90 GHz–100 GHz HCW. The black curve is the calculated value, the light blue circle is from the simulation, and the blue curve is from the Vector Network Analyzer measurement.

Jelic V, Iwaszczuk K, Nguyen P H, Rathje C, Hornig G J, Sharum H M, Hoffman J R, Freeman M R, Hegmann F A 2017 Nat. Phys. 13 591 DOI: 10.1038/nphys4047
Cheon H, Yang H, Lee S H, Kim Y A, Son J H 2016 Sci. Rep. 6 37103 DOI: 10.1038/srep37103
Nusinovich G S, Pu R, Antonsen T M, Sinitsyn O V, Rodgers J, Mohamed A, Silverman J, Al-Sheikhly M, Dimant Y S, Milikh G M, Glyavin M Y, Luchinin A G, Kopelovich E A, Granatstein V L 2010 J. Infrared Milli. Terahertz Waves 32 380 DOI: 10.1007/s10762-010-9708-y
Siegel P H 2002 IEEE Trans. Microwave Theory Tech. 50 910 DOI: 10.1109/22.989974
Dey I, Jana K, Fedorov V Y, Koulouklidis A D, Mondal A, Shaikh M, Sarkar D, Lad A D, Tzortzakis S, Couairon A, Kumar G R 2017 Nat. Commun. 8 1184 DOI: 10.1038/s41467-017-01382-x
Guo J, Xie J, Li D, Yang G, Chen F, Wang C, Zhang L, Andreev Y M, Kokh K A, Lanskii G V, Svetlichnyi V A 2015 Light-Sci. Appl. 4 e362 DOI: 10.1038/lsa.2015.135
Chong C K, McDermott D B, Lin A T, DeHope W J, Wang Q S, Luhmann N C 1996 IEEE Trans. Plasma Sci. 24 735 DOI: 10.1109/27.533075
Denisov G G, Bratman V L, Cross A W, He W, Phelps A D R, Ronald K, Samsonov S V, Whyte C G 1998 Phys. Rev. Lett. 81 5680 DOI: 10.1103/PhysRevLett.81.5680
Bratman V L, Cross A W, Denisov G G, He W, Phelps A D R, Ronald K, Samsonov S V, Whyte C G, Young A R 2000 Phys. Rev. Lett. 84 2746 DOI: 10.1103/PhysRevLett.84.2746
He W, Cross A W, Phelps A D R, Ronald K, Whyte C G, Samsonov S V, Bratman V L, Denisov G G 2006 Appl. Phys. Lett. 89 091504 DOI: 10.1063/1.2345607
Zhang L, He W, Ronald K, Phelps A D R, Whyte C G, Robertson C W, Young A R, Donaldson C R, Cross A W 2012 IEEE Trans. Microwave Theory Techniq. 60 1 DOI: 10.1109/TMTT.2011.2170848
He W, Donaldson C R, Zhang L, Ronald K, McElhinney P, Cross A W 2013 Phys. Rev. Lett. 110 165101 DOI: 10.1103/PhysRevLett.110.165101
Wang E, Li H, Li H, Yu S, Niu X, Liu Y 2005 Acta Phys. Sin. 54 5339 in Chinese DOI: 10.7498/aps.54.5339
Zhou L, Chen H, Xu Z, Zheng S, He X 2005 High Power Laser and Particle Beams 17 1051 in Chinese
Xue Z, Liu P, Du C 2014 Acta Phys. Sin. 63 080201 in Chinese DOI: 10.7498/aps.63.080201
Donaldson C R, He W, Zhang L, Cross A W 2013 IEEE Microw. Wirel. Co. 23 237 DOI: 10.1109/LMWC.2013.2251619
He W, Donaldson C R, Zhang L, Ronald K, Phelps A D R, Cross A W 2017 Phys. Rev. Lett. 119 184801 DOI: 10.1103/PhysRevLett.119.184801
Denisov G G, Bratman V L, Phelps A D R, Samsonov S V 1998 IEEE Trans. Plasma Sci. 26 508 DOI: 10.1109/27.700785
Kovalev N F, Orlova I M, Petelin M I 1968 Radiophys. Quantum Electron. 11 449 DOI: 10.1007/BF01034380
Denisov G G, Reznikov M G 1982 Radiophys. Quantum Electron. 25 407 DOI: 10.1007/BF01035315
He W, Ronald K, Young A R, Cross A W, Phelps A D R, Whyte C G, Rafferty E G, Thomson J, Robertson C W, Speirs D C, Samsonov S V, Bratman V L, Denisov G G 2005 IEEE Trans. Electron Dev. 52 839 DOI: 10.1109/TED.2005.845858
He W, Donaldson C R, Li F, Zhang L, Cross A W, Phelps A D R, Ronald K, Robertson C W, Whyte C G, Young A R 2011 International Journal of Terahertz Science and Technology 4 9 DOI: 10.11906/TST.009-019.2011.03.02
[1] A design of resonant cavity with an improved coupling-adjusting mechanism for the W-band EPR spectrometer
Yu He(贺羽), Runqi Kang(康润琪), Zhifu Shi(石致富), Xing Rong(荣星), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2022, 31(11): 117601.
[2] Coupling characteristics of laterally coupled gratings with slots
Kun Tian(田锟), Yonggang Zou(邹永刚), Linlin Shi(石琳琳), He Zhang(张贺), Yingtian Xu(徐英添), Jie Fan(范杰), Hui Tang(唐慧), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(11): 114208.
[3] Theoretical analysis and experimental validation of radial cascaded composite ultrasonic transducer
Xiao-Yu Wang(王晓宇), Zhi-Xin Yu(余芷欣), Jing Hu(胡静), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(4): 040701.
[4] Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method
Yan Wang(王艳), Ying-Cai Xie(谢英才), Shu-Yi Zhang(张淑仪), Xiao-Dong Lan(兰晓东). Chin. Phys. B, 2017, 26(8): 087703.
[5] Stoney formula for piezoelectric film/elastic substrate system
Wang-Min Zhou(周旺民), Wang-Jun Li(李望君), Sheng-Yun Hong(洪圣运), Jie Jin(金杰), Shu-Yuan Yin(尹姝媛). Chin. Phys. B, 2017, 26(3): 037701.
[6] Mode stability analysis in the beam-wave interaction process for a three-gap Hughes-type coupled cavity chain
Luo Ji-Run (罗积润), Cui Jian (崔健), Zhu Min (朱敏), Guo Wei (郭炜). Chin. Phys. B, 2013, 22(6): 067803.
[7] The relation between composition in laser absorption region and ambient pressure
Yang Bo(杨波), Zhu Jin-Rong(朱金荣), Yang Yan-Nan(杨雁南), Shen Zhong-Hua(沈中华), Lu Jian(陆建), and Ni Xiao-Wu(倪晓武) . Chin. Phys. B, 2008, 17(1): 199-204.
[8] Influence of air pressure on mechanical effect of laser plasma shock wave
Zhang Yu-Zhu(章玉珠), Wang Guang-An(王广安), Zhu Jin-Rong(朱金荣), Shen Zhong-Hua(沈中华), Ni Xiao-Wu(倪晓武), and Lu Jian(陆建). Chin. Phys. B, 2007, 16(9): 2752-2756.
No Suggested Reading articles found!