Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 074207    DOI: 10.1088/1674-1056/22/7/074207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effect of water temperature on pulse duration and energy of stimulated Brillouin scattering

Zhang Lei (张磊)a, Zhang Dong (张东)b, Li Jin-Zeng (李金增)a
a National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China;
b Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
Abstract  The water temperature has a strong effect on the kinematic viscosity, which is inversely proportional to the phonon lifetime and the gain coefficient. The higher the temperature is, the smaller the kinematic viscosity is, and the larger the phonon lifetime is. At a low pump power and a short focal length, we can derive a single-peak stimulated Brillouin scattering (SBS) pulse. The duration of this single-peak SBS pulse depends mainly on the phonon lifetime of water. With the raise of the water temperature, the duration of such a single-peak SBS pulse will become longer, and the SBS energy will become higher for the gain coefficient, which is related to the phonon lifetime. Therefore, varying the medium temperature can lead to the changes of SBS pulse duration and SBS energy.
Keywords:  stimulated Brillouin scattering      pulse duration and energy      water temperature      phonon lifetime  
Received:  29 November 2012      Revised:  14 January 2013      Accepted manuscript online: 
PACS:  42.65.Es (Stimulated Brillouin and Rayleigh scattering)  
  78.35.+c (Brillouin and Rayleigh scattering; other light scattering)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
Corresponding Authors:  Zhang Lei     E-mail:  zhanglei@nao.cas.cn

Cite this article: 

Zhang Lei (张磊), Zhang Dong (张东), Li Jin-Zeng (李金增) Effect of water temperature on pulse duration and energy of stimulated Brillouin scattering 2013 Chin. Phys. B 22 074207

[1] Jae S S, Sangwoo P, Hong J K and Jin W Y 2010 Appl. Phys. Lett. 96 131116
[2] Hong J K, Seong K L, Dong W L and Hong G 2005 Appl. Phys. Lett. 86 051111
[3] Liu D H, Shi J W, Ouyang M, Chen X D, Liu J and He X D 2009 Phys. Rev. A 80 033808
[4] Gao W, Hu X B, Sun D and Li J Y 2012 Opt. Express 20 20715
[5] Gao W, Sun D, Bi Y F and Li J Y 2012 Appl. Phys. B 107 355
[6] Zhu X H, Lü Z W and Wang Y L 2012 Chin Phys. B 21 074205
[7] Guo Q, Lu Z W and Wang Y L 2010 Appl. Phys. Lett. 96 221107
[8] Hon D T 1980 Opt. Lett. 5 516
[9] Hasi W L J, Fu M L, Lu H H, Gong S, Lu Z W, Lin D Y and He W M 2009 Chin. Phys. Lett. 26 064202
[10] Wang X L, Zhou P, Ma Y X, Ma H T, Xu X J, Liu Z J and Zhao Y J 2010 Chin. Phys. Lett. 27 124201
[11] Neshev D, Velchev I, Majewski W A, Hogervorst W and Ubachs W 1999 Appl. Phys. B 68 671
[12] Xu J F, Ren X B, Gong W P, Dai R and Liu D H 2003 Appl. Opt. 42 6704
[13] Menzel R and Eichler H J 1992 Phys. Rev. A 46 7139
[14] Boyd R W 2008 Nonlinear Optics (3rd edn.) (New York: Academic Press)
[15] Boyd R W and Rzazewski K 1990 Phys. Rev. A 42 5514
[16] Damzen M J, Vlad V I, Babin V and Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications (Bristol: IOP Publishing)
[17] Afshaarvahid S, Devrelis V and Munch J 1998 Phys. Rev. A 57 3961
[18] Hagknlocker E E, Minck R W and Rado W G 1967 Phys. Rev. A 154 226
[1] Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum
Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利). Chin. Phys. B, 2021, 30(8): 084205.
[2] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[3] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
[4] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[5] Polarization dependence of gain and amplified spontaneous Brillouin scattering noise analysis for fiber Brillouin amplifier
Kuan-Lin Mu(穆宽林), Jian-Ming Shang(商建明), Li-Hua Tang(唐丽华), Zheng-Kang Wang(王正康), Song Yu(喻松), Yao-Jun Qiao(乔耀军). Chin. Phys. B, 2019, 28(9): 094216.
[6] Effect of stimulated Brillouin scattering on the gain saturation of distributed fiber Raman amplifier and its suppression by phase modulation
Zhang Yi-Chi (张一弛), Chen Wei (陈伟), Sun Shi-Lin (孙世林), Meng Zhou (孟洲). Chin. Phys. B, 2015, 24(9): 094209.
[7] A simple model of suppressing stimulated Brillouin scattering in optical fiber with frequency-modulated laser
Hu Xiao-Yang (胡晓阳), Chen Wei (陈伟), Tu Xiao-Bo (涂晓波), Meng Zhou (孟洲). Chin. Phys. B, 2014, 23(12): 124208.
[8] A new method for measuring the threshold of stimulated Brillouin scattering
Zhu Xue-Hua(朱学华), LŰ Zhi-Wei(吕志伟) and Wang Yu-Lei(王雨雷) . Chin. Phys. B, 2012, 21(7): 074205.
[9] A 168-W high-power single-frequency amplifier in an all-fiber configuration
Xiao Hu(肖虎), Dong Xiao-Lin(董小林), Zhou Pu(周朴), Xu Xiao-Jun(许晓军), and Zhao Guo-Min(赵国民) . Chin. Phys. B, 2012, 21(3): 034207.
[10] Stimulated Brillouin scattering-induced phase noise in an interferometric fiber sensing system
Chen Wei(陈伟), Meng Zhou(孟洲), Zhou Hui-Juan(周会娟), and Luo Hong(罗洪) . Chin. Phys. B, 2012, 21(3): 034212.
[11] Bursting behaviours in cascaded stimulated Brillouin scattering
Liu Zhan-Jun(刘占军), He Xian-Tu(贺贤土), Zheng Chun-Yang(郑春阳), and Wang Yu-Gang(王宇钢) . Chin. Phys. B, 2012, 21(1): 015202.
[12] The 260-W coherent beam combining of two compact fibre amplifier chains
Wang Xiao-Lin(王小林), Ma Yan-Xing(马阎星), Zhou Pu(周朴), He Bing(何兵), Xue Yu-Hao(薛宇豪), Liu Chi(刘驰), Li Zhen(李震), Xiao Hu(肖虎), Xu Xiao-Jun(许晓军), Zhou Jun(周军), Liu Ze-Jin(刘泽金), and Zhao Yi-Jun(赵伊君) . Chin. Phys. B, 2011, 20(11): 114203.
[13] Stimulated supercontinuum-radiation generation of carbon disulfide by all-trans-β-carotene fluorescence enhancement effect in liquid core optical fibre
Men Zhi-Wei(门志伟), Fang Wen-Hui(房文汇), Li Zuo-Wei(里佐威), Qu Guan-Nan(曲冠男),Gao Shu-Qin(高淑琴), Lu Guo-Hui(陆国会),Yang Jian-Ge(杨健戈), and Sun Cheng-Lin(孙成林). Chin. Phys. B, 2010, 19(8): 084206.
[14] Spacing-adjustable and wavelength-tunable multiwavelength fibre laser with nonlinear Brillouin gain and birefringence fibre loop mirror
Zhang Zu-Xing(张祖兴), Wu Jian(伍剑), Xu Kun(徐坤), Hong Xiao-Bin(洪小斌), and Lin Jin-Tong(林金桐). Chin. Phys. B, 2010, 19(6): 064209.
[15] Laser-induced damage on large-aperture fused silica gratings
Han Wei(韩伟), Huang Wan-Qing(黄晚晴), Wang Fang(王芳), Li Ke-Yu(李恪宇), Feng Bin(冯斌), Li Fu-Quan(李富全), Jing Feng(景峰), and Zheng Wan-Guo(郑万国). Chin. Phys. B, 2010, 19(10): 106105.
No Suggested Reading articles found!