Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 076101    DOI: 10.1088/1674-1056/22/7/076101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Preferred orientations of encapsulated C60 molecules inside single wall carbon nanotubes

Yao Zhen (姚震), Liu Ran (刘然), Ma Feng-Xian (马凤仙), Lu Shuang-Chen (路双臣), Tian Fu-Bo (田夫波), Duan De-Fang (段德芳), Cui Tian (崔田), Liu Bing-Bing (刘冰冰)
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  A systematical study of the orientational behavior of C60 molecules in single wall carbon nanotubes (SWCNTs) with different chirality and diameter has been performed by using a model of an infinite long nanotube filled with two C60 (denoted as C60-1 and C60-2) molecules. We studied the preferred orientation of the C60-1 molecule when the neighboring C60-2 molecule was fixed at the pentagon, double-bond, and hexagon orientations respectively. Our results showed that the C60-1 molecule prefers the pentagon (hexagon) orientation when the tube diameter is smaller (larger) than 1.31 nm (1.36 nm). For the tube diameter in between, the preferred molecular orientation of C60-1 changes from pentagon to hexagon with the increasing tube diameter when the neighboring C60-2 molecule is fixed at the pentagon or double-bond orientation. A novel vertex orientation for the C60-1 molecule has been found when the C60-2 molecule is fixed at the hexagon orientation.
Keywords:  peapod      C60      nanotube      orientation  
Received:  13 March 2013      Revised:  20 March 2013      Accepted manuscript online: 
PACS:  61.46.-w (Structure of nanoscale materials)  
  61.48.-c (Structure of fullerenes and related hollow and planar molecular structures)  
  67.30.ef (Thermodynamics)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB808200), the National Natural Science Foundation of China (Grant Nos. 10979001, 51025206, 51032001, and 21073071), and the Cheung Kong Scholars Programme of China.
Corresponding Authors:  Liu Bing-Bing     E-mail:  liubb@jlu.edu.cn

Cite this article: 

Yao Zhen (姚震), Liu Ran (刘然), Ma Feng-Xian (马凤仙), Lu Shuang-Chen (路双臣), Tian Fu-Bo (田夫波), Duan De-Fang (段德芳), Cui Tian (崔田), Liu Bing-Bing (刘冰冰) Preferred orientations of encapsulated C60 molecules inside single wall carbon nanotubes 2013 Chin. Phys. B 22 076101

[1] Iijima S 1991 Nature 354 56
[2] Bandow S, Takizawa M, Hirahara K, Yudasaka M and Iijima S 2001 Chem. Phys. Lett. 337 48
[3] Sloan J, Hammer J, Zwiefka-Sibley M and Green M L H 1998 Chem. Commun. 3 347
[4] Sloan J, Wright D M, Woo H G, Bailey S, Brown G, York A P E, Coleman K S, Hutchison J L and Green M L H 1999 Chem. Commun. 8 699
[5] Meyer R R, Sloan J, Dunin-Borkowski R E, Kirkl A I, Novotny M C, Bailey S R, Hutchinson J L and Green M L H 2000 Science 289 1324
[6] Sloan J, Novotny M C, Bailey S R, Brown G, Xu C, Williams V C, Friedrichs S, Flahaut E, Callender R L, York A P E, Coleman K S, Green M L H, Dunin-Borkowski R E and Hutchison J L 2000 Chem. Phys. Lett. 329 61
[7] Fan X, Dickey E C, Eklund P C, Williams K A, Grigorian L, Buczko R, Pantelides S T and Pennycook S J 2000 Phys. Rev. Lett. 84 4621
[8] Sloan J, Terrones M, Nufer S, Friedrichs S, Bailey S R, Woo H G, Ruhle M, Hutchison J L and M L H Green 2002 J. Am. Chem. Soc. 124 2116
[9] Sloan J, Grosvenor S J, Friedrichs S, Kirkland A I, Hutchison J L and Green M L H 2002 Angew. Chem. Int. Ed. 41 1156
[10] Koga K, Gao G T, Tanaka H and Zeng X C 2001 Nature 412 802
[11] Wang Y, Zhao Y J and Huang J P 2012 Chin. Phys. B 21 076102
[12] Xie Y and Zhang J M 2011 Chin. Phys. B 20 127302
[13] Liu H, Dong J M, Qian M C and Wan X G 2003 Chin. Phys. Soc. 12 0542
[14] Smith B W, Monthioux M and Luzzi D E 1998 Nature 396 323
[15] Smith B W, Russo R M, Chikkannanavar S B and Luzzi D E 2002 J. Appl. Phys. 91 9333
[16] Burteaux B, Claye A, Smith B W, Monthioux M, Luzzi D E and Fischer J E 1999 Chem. Phys. Lett. 310 21
[17] Okazaki T, Okubo S, Nakanishi T, Joung S K, Saito T, Otani M, Okada S, Bandow S and Iijima S 2008 J. Am. Chem. Soc. 130 4122
[18] Hornbaker D J, Kahng S J, Misra S, Smith B W, Johnson A T, Mele E J, Luzzi D E and Yazdani A 2002 Science 295 828
[19] Lee J, Kim H, Kahng S J, Kim G, Son Y W, Ihm J, Kato H, Wang Z W, Okazaki T, Shinohara H and Kuk Y 2002 Nature 415 1005
[20] Okada S, Saito S and Oshiyama A 2001 Phy. Rev. Lett. 86 3835
[21] Otani M, Okada S and Oshiyama A 2003 Phys. Rev. B 68 125424
[22] Rochefort A 2003 Phys. Rev. B 67 115401
[23] Okada S, Otani M and Oshiyama A 2003 Phys. Rev. B 67 205411
[24] Abou-Hamad E, Kim Y, Wagberg T, Beosch D, Aloni S, Zettl A, Rubio A, Luzzi D E and Goze-Bac C 2009 ACS Nano 3 3878
[25] David W I F, Ibberson R M, Matthewman J C, Prassides K, Dennis T J S, Hare J P, Kroto H W, Taylor R and Walton D R M 1991 Nature 353 147
[26] Alemany M M G, Rey C, Dieguez O and Gallego L J 2000 J. Chem. Phys. 112 10711
[27] Girifalco L A 1992 J. Phys. Chem. 96 858
[28] Rols S, Cambedouzou J, Chorro M, Schober H, Agafonov V, Launois P, Davydov V, Rakhmanina A V, Katura H and Sauvajol J L 2008 Phys. Rev. Lett. 101 065507
[29] Cambedouzou J, Rols S, Almairac R, Sauvajol J L, Kataura H and Schober H 2005 Phys. Rev. B 71 041403
[30] Matsuda K, Maniwa Y and Kataura H 2008 Phys. Rev. B 77 075421
[31] Zou Y G, Liu B B, Wang L C, Liu D D, Yu S D, Wang P, Wang T Y, Yao M G, Li Q J, Zou B, Cui T, Wagberg T, Sundqvist B and Mao H W 2009 Proc. Natl. Acad. Sci. USA 106 22135
[32] Michel K H, Verberck B and Nikolaev A V 2005 Phys. Rev. Lett. 95 185506
[33] Michel K H, Verberck B and Nikolaev A V 2005 Eur. Phys. J. B 48 113
[34] Verberck B and Michel K H 2006 Phys. Rev. B. 74 045421
[35] Zou Y G, Liu B B, Yao M G, Hou Y Y, Yu S D, Wang P, Li B, Zou B, Cui T and Zou G T 2007 Phys. Rev. B 76 195417
[36] Rappe A K, Casewit C J, Colwell K S, Goddard III W A and Skiff W M 1992 J. Am.Chem. Soc. 114 10024
[37] Hodak M and Girifalco L A 2001 Chem. Phys. Lett. 350 405
[38] Troche K S, Coluci V R., Braga S F, Chinellato D D, Ssto F, Legoas S B, Rurali R and Galvao D S 2005 Nano Lett. 5 349
[39] Girifalco L A, Hodak M and Lee R S 2000 Phys. Rev. B 62 13104
[40] Song J and Cappelletti R L 1994 Phys. Rev. B 50 14678
[41] Verberck B, Cambedouzou J, Vliegenthart G A, Gompper G and Launois P 2012 Fullerence, Nanotubes, and Carbon Nanostructures 20 371
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[5] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[6] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[7] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[8] Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction
Ming-Lang Wang(王明郎), Bo-Han Zhang(张博涵), Wen-Fei Zhang(张雯斐), Xin-Yue Tian(田馨月), Guang-Ping Zhang(张广平), and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2022, 31(7): 077303.
[9] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[10] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[11] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[12] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[13] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[14] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[15] Solid-to-molecular-orientational-hexatic melting induced by local environment determined defect proliferations
Zhanglin Hou(侯章林), Jieli Wang(王杰利), Ying Zeng(曾颖), Zhiyuan Zhao(赵志远), Xing Huang(黄兴), Kun Zhao(赵坤), and Fangfu Ye(叶方富). Chin. Phys. B, 2022, 31(12): 126401.
No Suggested Reading articles found!