Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 077303    DOI: 10.1088/1674-1056/ac4cbf
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction

Ming-Lang Wang(王明郎), Bo-Han Zhang(张博涵), Wen-Fei Zhang(张雯斐), Xin-Yue Tian(田馨月), Guang-Ping Zhang(张广平), and Chuan-Kui Wang(王传奎)
School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Abstract  The understanding of the influence of electrode characteristics on charge transport is essential in the field of molecular electronics. In this work, we investigate the electronic transport properties of molecular junctions comprising methylthiol-terminated permethyloligosilanes and face-centered crystal Au/Ag electrodes with crystallographic orientations of (111) and (100), based on the ab initio quantum transport simulations. The calculations reveal that the molecular junction conductance is dominated by the electronic coupling between two interfacial metal-S bonding states, which can be tuned by varying the molecular length, metal material of the electrodes, and crystallographic orientation. As the permethyloligosilane backbone elongates, although the σ conjugation increases, the decreasing of coupling induced by the increasing number of central Si atoms reduces the junction conductance. The molecular junction conductance of methylthiol-terminated permethyloligosilanes with Au electrodes is higher than that with Ag electrodes with a crystallographic orientation of (111). However, the conductance trend is reversed when the electrode crystallographic orientation varies from (111) to (100), which can be ascribed to the reversal of interfacial coupling between two metal-S interfacial states. These findings are conducive to elucidating the mechanism of molecular junctions and improving the transport properties of molecular devices by adjusting the electrode characteristics.
Keywords:  molecular electronics      crystallographic orientations      non-equilibrium Green's function  
Received:  11 November 2021      Revised:  12 January 2022      Accepted manuscript online:  19 January 2022
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.40.-c (Electronic transport in interface structures)  
  31.15.at (Molecule transport characteristics; molecular dynamics; electronic structure of polymers)  
Fund: Project supported by the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2019PA022) and the National Natural Science Foundation of China (Grant No. 21933002).
Corresponding Authors:  Ming-Lang Wang, Chuan-Kui Wang     E-mail:  wangminglang@sdnu.edu.cn;ckwang@sdnu.edu.cn

Cite this article: 

Ming-Lang Wang(王明郎), Bo-Han Zhang(张博涵), Wen-Fei Zhang(张雯斐), Xin-Yue Tian(田馨月), Guang-Ping Zhang(张广平), and Chuan-Kui Wang(王传奎) Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction 2022 Chin. Phys. B 31 077303

[1] Xiang D, Wang X, Jia C, Lee T and Guo X 2016 Chem. Rev. 116 4318
[2] Evers F, Korytár R, Tewari S and van Ruitenbeek J M 2020 Rev. Mod. Phys. 92 035001
[3] Aviram A and Ratner M A 1974 Chem. Phys. Lett. 29 277
[4] Baldea I 2021 Phys. Rev. B 103 195408
[5] Song X, Yu X and Hu W 2020 J. Phys. Chem. C 124 24408
[6] Wei M, Fu X, Wang Z, Hu G, Li Z, Wang C and Zhang G 2019 J. Mater. Chem. C 7 9000
[7] Lee H J, Cho S J, Kang H, He X and Yoon H J 2021 Small 17 2005711
[8] Zang Y, Fu T, Zou Q, Ng F, Li H, Steigerwald M L, Nuckolls C and Venkataraman L 2020 Nano Lett. 20 8415
[9] O'Driscoll L J and Bryce M R 2021 Nanoscale 13 1103
[10] Meng L, Xin N, Wang J, Xu J, Ren S, Yan Z, Zhang M, Shen C, Zhang G and Guo X 2021 Angew. Chem. Int. Ed. 60 12274
[11] Wang M, Zhang G, Fu X and Wang C 2020 Chin. J. Chem. Phys. 33 697
[12] Jia C, Migliore A, Xin N, Huang S, Wang J, Yang Q, Wang S, Chen H, Wang D and Feng B 2016 Science 352 1443
[13] Xu Y, Wang M, Fang C, Cui B, Ji G, Zhao W, Liu D, Wang C and Qin M 2019 J. Phys.:Condens. Matter 31 285302
[14] Sun H, Liu X, Su Y, Deng B, Peng H, Decurtins S, Sanvito S, Liu S, Hou S and Liao J 2019 Nanoscale 11 13117
[15] Li P, Jia C and Guo X 2021 Chem. Rec. 21 1284
[16] Jia C and Guo X 2013 Chem. Soc. Rev. 42 5642
[17] Kaliginedi V, Rudnev A V, Moreno-García P, Baghernejad M, Huang C, Hong W and Wandlowski T 2014 Phys. Chem. Chem. Phys. 16 23529
[18] Su T A, Neupane M, Steigerwald M L, Venkataraman L and Nuckolls C 2016 Nat. Rev. Mater. 1 16002
[19] Liu W, Cheng J, Yan C, Li H, Wang Y and Liu D 2011 Chin. Phys. B 20 107302
[20] Dai X, Zhou Y, Li J, Zhang L, Zhao Z and Li H 2017 Chin. Phys. B 26 087310
[21] Cai C and Chen J 2018 Chin. Phys. B 27 067304
[22] Zeng J, Chen K and Zhou Y 2020 Chin. Phys. B 29 088503
[23] Peng C, Zhou Y, Zhang S and Zhao Z 2021 Chin. Phys. B 30 017101
[24] Bejarano F, Olavarria-Contreras I J, Droghetti A, Rungger I, Rudnev A and Gutiérrez D, Mas-Torrent M, Veciana J, Van Der Zant H S and Rovira C 2018 J. Am. Chem. Soc. 140 1691
[25] Zang Y, Pinkard A, Liu Z, Neaton J B, Steigerwald M L, Roy X and Venkataraman L 2017 J. Am. Chem. Soc. 139 14845
[26] Bruot C, Xiang L, Palma J L and Tao N 2015 ACS Nano 9 88
[27] Mohr M, Jasper-Toennies T, Weismann A, Frederiksen T, Garcia-Lekue A, Ulrich S, Herges R and Berndt R 2019 Phys. Rev. B 99 245417
[28] Li S, Jiang Y, Wang Y, Sanvito S and Hou S 2021 J. Phys. Chem. Lett. 12 7596
[29] Wang M, Wang H, Zhang G, Wang Y, Sanvito S and Hou S 2018 J. Chem. Phys. 148 184703
[30] Chen F, Li X, Hihath J, Huang Z and Tao N 2006 J. Am. Chem. Soc. 128 15874
[31] Lawson J W and Bauschlicher C W Jr 2006 Phys. Rev. B 74 125401
[32] Wang M and Wang C 2020 Chin. Phys. B 29 113101
[33] Kim Y, Song H, Strigl F, Pernau H, Lee T and Scheer E 2011 Phys. Rev. Lett. 106 196804
[34] Kim T, Vázquez H, Hybertsen M S and Venkataraman L 2013 Nano. Lett. 13 3358
[35] Sen A and Kaun C 2010 ACS Nano 4 6404
[36] Sen A, Lin C and Kaun C 2013 J. Phys. Chem. C 117 13676
[37] Zhao W, Yang C, Wang M and Ma X 2013 Solid State Commun. 153 1
[38] Tu X, Wang M, Sanvito S and Hou S 2014 J. Chem. Phys. 141 194702
[39] Kaur R P, Sawhney R S and Engles D 2016 Mol. Phys. 114 2289
[40] Kaur R, Narang S B and Randhawa D K K 2018 J. Mol. Model. 24 1
[41] Roy T R and Sen A 2021 Adv. Theory Simul. 4 2100054
[42] Fan Z, Xie F, Jiang X, Wei Z and Li S 2016 Carbon 110 200
[43] Fan Z, Zhang Z, Deng X, Tang G, Yang C, Sun L and Zhu H 2016 Carbon 98 179
[44] Wu D, Cao X, Jia P, Zeng Y, Feng Y, Tang L, Zhou W and Chen K 2020 Sci. China-Phys. Mech. Astron. 63 276811
[45] Liu Q, Li J, Wu D, Deng X, Zhang Z, Fan Z and Chen K 2021 Phys. Rev. B 104 045412
[46] West R and Carberry E 1975 Science 189 179
[47] Tsuji H, Terada M, Toshimitsu A and Tamao K 2003 J. Am. Chem. Soc. 125 7486
[48] Bande A and Michl J 2009 Chem. Eur. J. 15 8504
[49] Klausen R S, Widawsky J R, Steigerwald M L, Venkataraman L and Nuckolls C 2012 J. Am. Chem. Soc. 134 4541
[50] Su T A, Li H, Klausen R S, Widawsky J R, Batra A, Steigerwald M L, Venkataraman L and Nuckolls C 2016 J. Am. Chem. Soc. 138 7791
[51] Li H, Kim N T, Su T A, Steigerwald M L, Nuckolls C, Darancet P, Leighton J L and Venkataraman L 2016 J. Am. Chem. Soc. 138 16159
[52] Rodrigues V, Fuhrer T and Ugarte D 2000 Phys. Rev. Lett. 85 4124
[53] Li H, Garner M H, Su T A, Jensen A, Inkpen M S, Steigerwald M L, Venkataraman L, Solomon G C and Nuckolls C 2017 J. Am. Chem. Soc. 139 10212
[54] Jovanovic M and Michl J 2018 J. Am. Chem. Soc. 140 11158
[55] Su T A, Li H, Steigerwald M L, Venkataraman L and Nuckolls C 2015 Nat. Chem. 7 215
[56] Li H, Su T A, Camarasa-Gómez M, Hernangómez-Pérez D, Henn S E, Pokorny V, Caniglia C D, Inkpen M S, Korytár R and Steigerwald M L 2017 Angew. Chem. Int. Ed. 129 14333
[57] Atomistix toolKit version 2018.06, synopsys quantumwise A/S (www.quantumwise.com)
[58] Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A and Vej-Hansen U G 2019 J. Phys.:Condens. Matter 32 015901
[59] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[60] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and Sánchez-Portal D 2002 J. Phys.:Condens Matter 14 2745
[61] García-Gil S, García A, Lorente N and Ordejón P 2009 Phys. Rev. B 79 075441
[62] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[63] Brandbyge M, Mozos J, Ordejón P, Taylor J and Stokbro, K 2002 Phys. Rev. B 65 165401
[64] Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge:Cambridge University Press), p. 92
[65] Xiang A, Wang M, Wang H, Sun H, Hou S and Liao J 2016 Chem. Phys. 465-466 40
[1] Tuning the type of charge carriers in N-heterocyclic carbene-based molecular junctions through electrodes
Ming-Lang Wang(王明郎) and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2020, 29(11): 113101.
[2] Influence of external voltage on electronic transport properties of molecular junctions: the nonlinear transport behaviour 
Li Zong-Liang (李宗良), Wang Chuan-Kui (王传奎), Luo Yi (罗毅), Xue Qi-Kun (薛其坤). Chin. Phys. B, 2005, 14(5): 1036-1040.
No Suggested Reading articles found!