Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 020704    DOI: 10.1088/1674-1056/ac70b7
GENERAL Prev   Next  

Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping

Chao-Zhong Wang(王朝中)1, Lei Liu(刘雷)1,2,†, Ying-Li Sun(孙颖莉)1,2, Jiang-Tao Zhao(赵江涛)1, Bo Zhou (周波)1, Si-Si Tu(涂思思)1, Chun-Guo Wang(王春国)1, Yong Ding(丁勇)1,‡, and A-Ru Yan(闫阿儒)1,2
1 CISRI&NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences(CAS), Ningbo 315201, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The effects of Nd doping on the microstructures and magnetic properties of Sm$_{1-x}$Nd$_{x}$ (Co$_{0.695}$Fe$_{0.2}$Cu$_{0.08}$Zr$_{0.025}$)$_{7.2}$ ($x=0$, 0.3, 0.5, 0.7, 1.0) permanent magnets are studied. The scanning electron microscope (SEM) analysis of the solid solution states of the magnets shows that with the increase of Nd content, the distribution of elements becomes inhomogeneous and miscellaneous phase will be generated. Positive temperature coefficient of coercivity ($\beta $) appears in each of the samples with $x=0.3$, 0.5, and 0.7. The corresponding positive $\beta $ temperatures are in ranges of about 70 K-170 K, 60 K-260 K, 182 K-490 K for the samples with $x=0.3$, 0.5, and 0.7, respectively. Thermomagnetic analysis shows that spin-reorientation-transition (SRT) of the cell boundary phase is responsible for this phenomenon. On the basis of this discovery, the Sm$_{0.7}$Nd$_{0.3}$ (Co$_{0.695}$Fe$_{0.2}$Cu$_{0.08}$Zr$_{0.025}$)$_{7.2}$ magnet possessing thermal stability with $\beta \approx -0.002 $ %/K at the temperature in a range of 150 K-200 K is obtained.
Keywords:  SmCo-spin reorientation      transition-thermal      stability-rare-earth  
Received:  18 March 2022      Revised:  11 May 2022      Accepted manuscript online:  18 May 2022
PACS:  07.55.-w (Magnetic instruments and components)  
  75.50.Vv (High coercivity materials)  
  68.60.Dv (Thermal stability; thermal effects)  
  76.30.Kg (Rare-earth ions and impurities)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFB3803003 and 2021YFB3503101), the Major Project of “Science and Technology Innovation 2025” in Ningbo, China (Grant No. 2020Z044), the Zhejiang Provincial Key Research and Development Program, China (Grant No. 2021C01172), and the National Natural Science Funds of China (Grant No. 51601209).
Corresponding Authors:  Lei Liu, Yong Ding     E-mail:;

Cite this article: 

Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒) Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping 2023 Chin. Phys. B 32 020704

[1] Wu H, Zhang C, Liu Z, Wang G, Lu H, Chen G, Li Y, Chen R and Yan A 2020 Acta Materialia 200 883
[2] Mishra R K, Thomas G, Yoneyama T, Fukuno A and Ojima T 1981 J. Appl. Phys. 52 2517
[3] Horiuchi Y, Hagiwara M, Okamoto K, Kobayashi T, Endo M, Kobayashi T, Sanada N and Sakurada S 2014 Mater. Trans. 55 482
[4] Liu J P, Fullerton E, Gutfleisch O and Sellmyer D J 2009 Nanoscale Magnetic Materials and Applications
[5] Plugaru N, Rubín J and Bartolomé J 2007 J. Alloys Compd. 433 129
[6] Gutfleisch O, Müller K H, Khlopkov K, Wolf M, Yan A, Schäfer R, Gemming T and Schultz L 2006 Acta Materialia 54 997
[7] Zhang C, Liu Z, Li M, Liu L, Li T, Chen R, Lee D and Yan A 2018 Sci. Rep. 8
[8] Gjoka M, Panagiotopoulos I, Niarchos D, Matthias T and Fidler J 2004 J. Alloys Compd. 367 262
[9] Liu Z, Liu L, Chen R J, Sun Y L, Lee D and Yan A R 2013 IEEE Trans. Magn. 49 5599
[10] Wang J, Chen R, Rong C, Liu Z, Zhang H, Shen B and Yan A 2010 J. Appl. Phys. 107 09A707
[11] Liu L, Liu Z, Zhang X, Zhang C, Li T, Lee D and Yan A 2019 J. Magn. Magn. Mater. 473 376
[12] Liu J F, Zhang Y and Hadjipanayis G C 1999 J. Magn. Magn. Mater. 202 69
[13] Liu J F, Chui T, Dimitrov D and Hadjipanayis G C 1998 Appl. Phys. Lett. 73 3007
[14] Goll D, Kleinschroth I, Sigle W and Kronmüller H 2000 Appl. Phys. Lett. 76 1054
[15] Liu S, Yang J, Doyle G, Potts G and Kuhl G E 2000 J. Appl. Phys. 87 6728
[16] Zhao T S, Jin H M, Guo G H, Han X F and Chen H 1991 Phys. Rev. B 43 8593
[17] Liu L, Liu Z, Li M, Lee D, Chen R J, Liu J, Li W and Yan A R 2015 Appl. Phys. Lett. 106 052408
[18] Zuo S, Liu J, Qiao K, Zhang Y, Chen J, Su N, Liu Y, Cao J, Zhao T, Wang J, Hu F, Sun J, Jiang C and Shen B 2021 Adv. Mater. 33 2103751
[19] Kumar S, Patrick C E, Edwards R S, Balakrishnan G, Lees M R and Staunton J B 2020 Appl. Phys. Lett. 116 102408
[20] Seifert M, Schultz L, Schäfer R, Neu V, Hankemeier S, Rossler S, Fromter R and Oepen H P 2013 New J. Phys. 15 013019
[21] Li E X, Jailin L and Yuxian D 1980 IEEE Trans. Magn. 16 988
[22] Changguo J J Y, Weihua M, Yingchang Y, Wei L and Xiaojun Y 1998 Solid State Commun. 108 667
[23] Liu S, Ray A E and Mildrum H F 1990 J. Appl. Phys. 67 4975
[24] Luo C, Fu Y, Zhang D, Yuan S, Zhai Y, Dong S and Zhai H 2015 J. Magn. Magn. Mater. 374 711
[25] Koo J 1984 IEEE Trans. Magn. 20 1593
[26] Liu S A E R, Chen C H and Mildrum H F 1991 J. Appl. Phys. 69 5853
[27] Willman C J K S V L N 1985 IEEE Trans. Magn. 21 1976
[28] Yuan T, Song X, Zhou X, Jia W, Musa M, Wang J and Ma T 2020 J. Mater. Sci. Technol. 53 73
[29] Wang S, Fang Y, Song K, Zhu X, Wang L, Sun W, Pan W, Zhu M and Li W 2020 Journal of Rare Earths 38 1224
[30] Horiuchi Y, Hagiwara M, Okamoto K, Kobayashi T, Endo M, Kobayashi T, Nakamura T and Sakurada S 2013 IEEE Trans. Magn. 49 3221
[31] Lee R W 1979 IEEE Trans. Magn. 15 1762
[32] Xia W, Zhang T, Liu J, Dong Y, Wang H and Jiang C 2021 J. Magn. Magn. Mater. 528 167763
[33] Chaudhary V, Zhong Y, Parmar H, Tan X and Ramanujan R V 2018 Chemphyschem 19 2370
[34] Kronmüller H and Goll D 2003 Scripta Materialia 48 833
[1] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[2] Two-dimensional finite element mesh generation algorithm for electromagnetic field calculation
Chun-Feng Zhang(章春锋), Wei Wang(汪伟), Si-Guang An(安斯光), and Nan-Ying Shentu(申屠南瑛). Chin. Phys. B, 2021, 30(1): 010101.
[3] General analytical method of designing shielded coils for arbitrary axial magnetic field
Yi Zhang(张燚), Yu-Jiao Li(李玉姣), Qi-Yuan Jiang(江奇渊), Zhi-Guo Wang(汪之国), Tao Xia(夏涛), Hui Luo(罗晖). Chin. Phys. B, 2019, 28(11): 110702.
[4] Development of adjustable permanent magnet Zeeman slowers for optical lattice clocks
Xiao-Hang Zhang(张晓航), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(5): 053701.
[5] In-situ measurement of magnetic field gradient in a magnetic shield by a spin-exchange relaxation-free magnetometer
Fang Jian-Cheng (房建成), Wang Tao (王涛), Zhang Hong (张红), Li Yang (李阳), Cai Hong-Wei (蔡洪炜). Chin. Phys. B, 2015, 24(6): 060702.
[6] Mössbauer studies on the shape effect of Fe84.94Si9.68Al5.38 particles on their microwave permeability
Han Man-Gui (韩满贵), Deng Long-Jiang (邓龙江). Chin. Phys. B, 2013, 22(8): 083303.
[7] Fabrication and electromagnetic wave absorption properties of amorphous Ni–P nanotubes
Lu Hai-Peng(陆海鹏), Han Man-Gui(韩满贵), Cai Li(蔡黎), and Deng Long-Jiang(邓龙江). Chin. Phys. B, 2011, 20(6): 060701.
[8] A digital filtering scheme for SQUID based magnetocardiography
Zhu Xue-Min (朱学敏), Ren Yu-Feng (任育峰), Yu Hong-Wei (于洪伟), Zhao Shi-Ping (赵士平), Chen Geng-Hua (陈赓华), Zhang Li-Hua (张利华), Yang Qian-Sheng (杨乾声). Chin. Phys. B, 2006, 15(1): 100-103.
[9] A robust method for performance evaluation of the vapor cell for magnetometry
Zhi Liu(柳治), Sheng Zou(邹升), Kaifeng Yin(尹凯峰), Tao Shi(石韬),Junjian Tang(唐钧剑), and Heng Yuan(袁珩). Chin. Phys. B, 2023, 32(4): 040703.
No Suggested Reading articles found!