Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 097304    DOI: 10.1088/1674-1056/ac6db4
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optical second-harmonic generation of Janus MoSSe monolayer

Ce Bian(边策)1,2, Jianwei Shi(史建伟)3,4, Xinfeng Liu(刘新风)3,4, Yang Yang(杨洋)1, Haitao Yang(杨海涛)1,2,5,†, and Hongjun Gao(高鸿钧)1,2,5
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China;
3 CAS Key Laboratory of Standardization and Measurement for Nanotechnology and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China;
4 School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
5 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  The transition metal dichalcogenides (TMD) monolayers have shown strong second-harmonic generation (SHG) owing to their lack of inversion symmetry. These ultrathin layers then serve as the frequency converters that can be intergraded on a chip. Here, taking MoSSe as an example, we report the first detailed experimental study of the SHG of Janus TMD monolayer, in which the transition metal layer is sandwiched by the two distinct chalcogen layers. It is shown that the SHG effectively arises from an in-plane second-harmonic polarization under paraxial focusing and detection. Based on this, the orientation-resolved SHG spectroscopy is realized to readily determine the zigzag and armchair axes of the Janus crystal with an accuracy better than ±0.6°. Moreover, the SHG intensity is wavelength-dependent and can be greatly enhanced (~ 60 times) when the two-photon transition is resonant with the C-exciton state. Our findings uncover the SHG properties of Janus MoSSe monolayer, therefore lay the basis for its integrated frequency-doubling applications.
Keywords:  Janus MoSSe monolayer      second-harmonic generation (SHG)      orientation-resolved spectroscopy      C-exciton resonance  
Received:  10 March 2022      Revised:  23 April 2022      Accepted manuscript online:  07 May 2022
PACS:  73.63.Bd (Nanocrystalline materials)  
  42.70.Mp (Nonlinear optical crystals)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.79.Nv (Optical frequency converters)  
Fund: We thank Wanghua Wu and Yiyang Gong for the assistance with SHG measurements. This work was supported by the National Natural Science Foundation of China (Grant Nos. 61888102, 51771224, and 62175253), the National Key R&D Program of China (Grant Nos. 2018YFA0305803 and 2019YFA0308501), and the Chinese Academy of Sciences (Grant Nos. XDB33030100 and XDB30010000). J. S. and X. L. thank the supports from the National Natural Science Foundation of China (Grant Nos. 20173025, 22073022, and 11874130), the National Key R&D Program of China (Grant No. 2017YFA0205004), the Chinese Academy of Sciences (Grant Nos. XDB36000000 and Y950291), and the DNL Cooperation Fund (Grant No. DNL202016).
Corresponding Authors:  Haitao Yang     E-mail:  htyang@iphy.ac.cn

Cite this article: 

Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧) Optical second-harmonic generation of Janus MoSSe monolayer 2022 Chin. Phys. B 31 097304

[1] Corn R M and Higgins D A 1994 Chem. Rev. 94 107
[2] Risk W P, Gosnell T R and Nurmikko A V 2003 Compact Blue-Green Lasers (Cambridge:Cambridge University Press)
[3] Zhang J T, Zhao W N, Yu P, Yang G W and Liu Z 2020 2D Mater. 7 042002
[4] Wang Y, Xiao J, Yang S, Wang Y and Zhang X 2019 Opt. Mater. Express 9 1136
[5] Malard L M, Alencar T V, Barboza A P M, Mak K F and de Paula A M 2013 Phys. Rev. B 87 201401
[6] Kumar N, Najmaei S, Cui Q N, Ceballos F, Ajayan P M, Lou J and Zhao H 2013 Phys. Rev. B 87 161403
[7] Janisch C, Wang Y X, Ma D, Mehta N, Elias A L, Perea-Lopez N, Terrones M, Crespi V and Liu Z W 2014 Sci. Rep. 4 5530
[8] Wang G, Marie X, Gerber I, Amand T, Lagarde D, Bouet L, Vidal M, Balocchi A and Urbaszek B 2015 Phys. Rev. Lett. 114 097403
[9] Seyler K L, Schaibley J R, Gong P, Rivera P, Jones A M, Wu S F, Yan J Q, Mandrus D G, Yao W and Xu X D 2015 Nat. Nanotechnol. 10 407
[10] Wu C C, Shang N Z, Zhao Z X, Zhang Z H, Liang J, Liu C, Zuo Y G, Ding M C, Wang J H, Hong H, Xiong J and Liu K H 2021 Chin. Phys. B 30 027803
[11] Mennel L, Furchi M M, Wachter S, Paur M, Polyushkin D K and Mueller T 2018 Nat. Commun. 9 516
[12] Mennel L, Paur M and Mueller T 2019 APL Photon. 4 034404
[13] Liang J, Zhang J, Li Z Z, Hong H, Wang J H, Zhang Z H, Zhou X, Qiao R X, Xu J Y, Gao P, Liu Z R, Liu Z F, Sun Z P, Meng S, Liu K H and Yu D P 2017 Nano Lett. 17 7539
[14] Hong H, Wu C C, Zhao Z X, Zuo Y G, Wang J H, Liu C, Zhang J, Wang F F, Feng J G, Shen H B, Yin J B, Wu Y C, Zhao Y, Liu K H, Gao P, Meng S, Wu S W, Sun Z P, Liu K H and Xiong J 2021 Nat. Photon. 15 510
[15] Li D W, Wei C Y R, Song J F, Huang X, Wang F, Liu K, Xiong W, Hong X, Cui B, Feng A X, Jiang L and Lu Y F 2019 Nano Lett. 19 4195
[16] Qian Q K, Zu R, Ji Q Q, Jung G S, Zhang K Y, Zhang Y, Buehler M J, Kong J, Gopalan V and Huang S X 2020 ACS Nano 14 13333
[17] Chen H T, Corboliou V, Solntsev A S, Choi D Y, Vincenti M A, de Ceglia D, de Angelis C, Lu Y R and Neshev D N 2017 Light Sci. Appl. 6 e17060
[18] Fryett T K, Seyler K L, Zheng J J, Liu C H, Xu X D and Majumdar A 2017 2D Mater. 4 015031
[19] Han X B, Wang K, Persaud P D, Xing X Y, Liu W W, Long H, Li F, Wang B, Singh M R and Lu P X 2020 ACS Photon. 7 562
[20] Zhang Z, Zhang L, Gogna R, Chen Z H and Deng H 2020 Solid State Commun. 322 114043
[21] Lu A Y, Zhu H Y, Xiao J, Chuu C P, Han Y M, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y M, Wang Y, Sokaras D, Nordlund D, Yang P D, Muller D A, Chou M Y, Zhang X and Li L J 2017 Nat. Nanotechnol. 12 744
[22] Zhang J, Jia S, Kholmanov I, Dong L, Er D Q, Chen W B, Guo H, Jin Z H, Shenoy V B, Shi L and Lou J 2017 ACS Nano 11 8192
[23] Zheng T, Lin Y C, Yu Y L, Valencia-Acuna P, Puretzky A A, Torsi R, Liu C Z, Ivanov I N, Duscher G, Geohegan D B, Ni Z H, Xiao K and Zhao H 2021 Nano Lett. 21 931
[24] Jin H, Wang T, Gong Z R, Long C and Dai Y 2018 Nanoscale 10 19310
[25] Liu X F, Gao P F, Hu W and Yang J L 2020 J. Phys. Chem. Lett. 11 4070
[26] Petric M M, Kremser M, Barbone M, Qin Y, Sayyad Y, Shen Y X, Tongay S, Finley J J, Botello-Mendez A R and Muller K 2021 Phys. Rev. B 103 035414
[27] Mignuzzi S, Pollard A J, Bonini N, Brennan B, Gilmore I S, Pimenta M A, Richards D and Roy D 2015 Phys. Rev. B 91 195411
[28] Guo Y F, Lin Y X, Xie K C, Yuan B A, Zhu J D, Shen P C, Lu A Y, Su C, Shi E Z, Zhang K Y, HuangFu C A, Xu H W, Cai Z Y, Park J H, Ji Q Q, Wang J T, Dai X C, Tian X Z, Huang S X, Dou L T, Jiao L Y, Li J, Yu Y, Idrobo J C, Cao T, Palacios T and Kong J 2021 Proc. Natl Acad. Sci. USA 118 e2106124118
[29] Boyd R W 2019 Nonlinear Optics, 4th edn. (San Diego:Academic Press)
[30] Zeng J H, Yuan M H, Yuan W G, Dai Q F, Fan H H, Lan S and Tie S L 2015 Nanoscale 7 13547
[31] Wei Y D, Xu X D, Wang S S, Li W Q and Jiang Y Y 2019 Phys. Chem. Chem. Phys. 21 21022
[32] Chu S W, Chen S Y, Chern G W, Tsai T H, Chen Y C, Lin B L and Sun C K 2004 Biophys. J. 86 3914
[33] Wang X H, Chang S J, Lin L, Wang L R, Huo B Z and Hao S J 2010 J. Opt. 12 045201
[34] Yew E Y S and Sheppard C J R 2006 Opt. Express 14 1167
[35] Gerrard A and Burch J M 1994 Introduction to Matrix Methods in Optics (New York:Dover Publications)
[36] Trolle M L, Tsao Y C, Pedersen K and Pedersen T G 2015 Phys. Rev. B 92 161409
[1] Characterization of inner layer thickness change of a composite circular tube using nonlinear circumferential guided wave:A feasibility study
Ming-Liang Li(李明亮), Guang-Jian Gao(高广健), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2021, 30(8): 084301.
[2] Effect of strain on electrochemical performance of Janus MoSSe monolayer anode material for Li-ion batteries: First-principles study
Guoqing Wang(王国庆), Wenjing Qin(秦文静), and Jing Shi(石晶). Chin. Phys. B, 2021, 30(4): 046301.
[3] Enhancement effect of cumulative second-harmonic generation by closed propagation feature of circumferential guided waves
Guang-Jian Gao(高广健), Ming-Xi Deng(邓明晰), Ning Hu(胡宁), Yan-Xun Xiang(项延训). Chin. Phys. B, 2020, 29(2): 024301.
[4] Response features of nonlinear circumferential guided wave on early damage in inner layer of a composite circular tube
Ming-Liang Li(李明亮), Liang-Bing Liu(刘良兵), Guang-Jian Gao(高广健), Ming-Xi Deng(邓明晰), Ning Hu(胡宁), Yan-Xun Xiang(项延训), Wu-Jun Zhu(朱武军). Chin. Phys. B, 2019, 28(4): 044301.
[5] Review on second-harmonic generation of ultrasonic guided waves in solid media (I):Theoretical analyses
Wei-Bin Li(李卫彬), Ming-Xi Deng(邓明晰), Yan-Xun Xiang(项延训). Chin. Phys. B, 2017, 26(11): 114302.
No Suggested Reading articles found!